精英家教网 > 高中数学 > 题目详情

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

【答案】B

【解析】A为一等奖,则甲,丙,丁的说法均错误,故不满足题意,

B为一等奖,则乙,丙说法正确,甲,丁的说法错误,故满足题意,

C为一等奖,则甲,丙,丁的说法均正确,故不满足题意,

D为一等奖,则只有甲的说法正确,故不合题意,

故若这四位同学中只有两位说的话是对的,则获得一等奖的作品是B

故答案为:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(1)在等差数列中,已知,前项和为,且,求当取何值时, 取得最大值,并求出它的最大值;

(2)已知数列的通项公式是,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左,右焦点分别为.点在椭圆上,直线过坐标原点,若 .

(1)求椭圆的方程;

(2) 设椭圆在点处的切线记为直线,点上的射影分别为,过的垂线交轴于点,试问是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点A(2,0),B(0,2),C(cosα,sinα).
(1)若 ,且α∈(0,π),求角α的值;
(2)若 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB= b.
(Ⅰ)求角A的大小;
(Ⅱ)若a=6,b+c=8,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据下列条件,求直线的方程:
(Ⅰ)过直线l1:2x﹣3y﹣1=0和l2:x+y+2=0的交点,且垂直于直线2x﹣y+7=0;
(Ⅱ)过点(﹣3,1),且在两坐标轴上的截距之和为﹣4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P﹣ABCD的四条侧棱长相等,底面ABCD为正方形,M为PB的中点,求证:
(Ⅰ)PD∥平面ACM;
(Ⅱ)PO⊥平面ABCD;
(Ⅲ)若PA=AB,求异面直线PD与CM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,平面PAC⊥平面ABC,PA⊥AC,AB⊥BC.设D,E分别为PA,AC中点.
(Ⅰ)求证:DE∥平面PBC;
(Ⅱ)求证:BC⊥平面PAB;
(Ⅲ)试问在线段AB上是否存在点F,使得过三点 D,E,F的平面内的任一条直线都与平面PBC平行?若存在,指出点F的位置并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, 底面 ,且.

(1)若上一点,且,证明:平面平面.

(2)若为棱上一点,且平面,求三棱锥的体积.

查看答案和解析>>

同步练习册答案