【题目】2019年春节期间,我国高速公路继续执行“节假日高速免费政策”.某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速收费点处记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如图所示,其中时间段9:20~9:40记作区间,9:40~10:00记作,10:00~10:20记作,10:20~10:40记作.比方:10点04分,记作时刻64.
(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);
(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,记为9:20~10:00之间通过的车辆数,求的分布列与数学期望;
(3)由大数据分析可知,车辆在春节期间每天通过该收费点的时刻服从正态分布,其中可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).
参考数据:若,则,,.
【答案】(1)10点04分;(2)详见解析;(3)819辆.
【解析】
(1)用每组中点值乘以频率,然后相加,得到平均值.(2)先用分层抽样的知识计算出量车中位于的车辆数,然后利用超几何分布的知识计算出分布列,并求得数学期望.(3)由(1)可知,计算出方差和标准差,利用正态分布的对称性,计算出在9:46~10:40这一时间段内通过的车辆的概率,乘以得到所求车辆数.
解:(1)这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值为,即10点04分。
(2)结合频率分布直方图和分层抽样的方法可知:抽取的10辆车中,在10:00前通过的车辆数就是位于时间分组中在这一区间内的车辆数,即,所以的可能取值为0,1,2,3,4。
所以,,,,,
所以的分布列为
0 | 1 | 2 | 3 | 4 | |
所以.
(3)由(1)可得,
,
所以.
估计在9:46~10:40这一时间段内通过的车辆数,也就是通过的车辆数,
由,得 ,
所以,估计在9:46~10:40这一时间段内通过的车辆数为(辆).
科目:高中数学 来源: 题型:
【题目】为培养学生的阅读习惯,某校开展了为期一年的“弘扬传统文化,阅读经典名著”活动. 活动后,为了解阅读情况,学校统计了甲、乙两组各10名学生的阅读量(单位:本),统计结果用茎叶图记录如下,乙组记录中有一个数据模糊,无法确认,在图中以a表示.
(Ⅰ)若甲组阅读量的平均值大于乙组阅读量的平均值,求图中a的所有可能取值;
(Ⅱ)将甲、乙两组中阅读量超过15本的学生称为“阅读达人”. 设,现从所有的“阅读达人”里任取2人,求至少有1人来自甲组的概率;
(Ⅲ)记甲组阅读量的方差为. 若在甲组中增加一个阅读量为10的学生,并记新得到的甲组阅读量的方差为,试比较,的大小.(结论不要求证明)
(注:,其中为数据的平均数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是椭圆与抛物线的一个公共点,且椭圆与抛物线具有一个相同的焦点.
(1)求椭圆及抛物线的方程;
(2)设过且互相垂直的两动直线,与椭圆交于两点,与抛物线交于两点,求四边形面积的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.
(1)求证:PA⊥BD;
(2)求证:平面BDE⊥平面PAC;
(3)当PA∥平面BDE时,求三棱锥E-BCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着互联网技术的快速发展,人们更加关注如何高效地获取有价值的信息,网络知识付费近两年呈现出爆发式的增长,为了了解网民对网络知识付费的态度,某网站随机抽查了岁及以上不足岁的网民共人,调查结果如下:
(1)请完成上面的列联表,并判断在犯错误的概率不超过的前提下,能否认为网民对网络知识付费的态度与年龄有关?
(2)在上述样本中用分层抽样的方法,从支持和反对网络知识付费的两组网民中抽取名,若在上述名网民中随机选人,求至少1人支持网络知识付费的概率.
附:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.
(1)证明:BE⊥DC;
(2)求直线BE与平面PBD所成角的正弦值;
(3)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com