精英家教网 > 高中数学 > 题目详情
19.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ) 证明:PA⊥BD;
(Ⅱ) 设PD=AD=1,求直线PC与平面ABCD所成角的正切值.

分析 (Ⅰ)在△ABD中,由已知结合余弦定理可得BD2=3AD2,进一步得到AB2=AD2+BD2,可得BD⊥AD.再由PD⊥平面ABCD,可得PD⊥BD.由线面垂直的判定可得
BD⊥平面PAD,则PA⊥BD;
(Ⅱ)由PD⊥平面ABCD,知∠PCD为PC与平面ABCD所称的角.在Rt△BAD中,求解直角三角形得AB=2,则DC=2,则tan∠PCD可求.

解答 (Ⅰ)证明:在△ABD中,∠DAB=60°,AB=2AD,
由余弦定理可得:BD2=AB2+AD2-2AB•AD•cos∠DAB,
∴BD2=5AD2-2AD2=3AD2,则AB2=AD2+BD2,即BD⊥AD.
又PD⊥平面ABCD,∴PD⊥BD.
∵PD∩AD=D,∴BD⊥平面PAD,则PA⊥BD;
(Ⅱ)解:∵PD⊥平面ABCD,∴∠PCD为PC与平面ABCD所称的角.
在Rt△BAD中,AD=1,∠DAB=60°,
∴AB=2,则DC=2,
∴tan∠PCD=$\frac{PD}{DC}=\frac{1}{2}$.

点评 本题考查直线与平面垂直的判定与性质,考查空间想象能力和思维能力,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.程序框图如图所示,则该程序运行后输出n的值是(  )
A.4B.2C.1D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.当a=5时,程序运行的结果为(  )
A.3B.7C.-3D.-7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\left\{\begin{array}{l}x+y≤4\\ y≤x+1\\ y≥1\end{array}\right.$,则z=2x+y的最大值为(  )
A.7B.$\frac{11}{2}$C.1D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程与圆${(x+\sqrt{3})}^{2}+{(y+1)}^{2}=1$相切,则此双曲线的离心率为(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数$f(x)=\frac{4}{3}{x^3}-\frac{3}{2}{x^2}-x+210$的单调递增区间是(  )
A.$({-∞,-\frac{1}{4}}]$B.$[{-\frac{1}{4},1}]$C.[1,+∞)D.$({-∞,-\frac{1}{4}}]及[{1,+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(1)求实数a,b的值;
(2)过点A(0,16)作曲线y=f(x)的切线,求此切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知m,n是不同的直线,α,β是不重合的平面,给出下面四个命题:
①若α∥β,m?α,n?β,则m∥n
②若m,n?α,m∥β,n∥β,则α∥β
③若m,n是两条异面直线,若m∥α,m∥β,n∥α,n∥β,则α∥β
④如果m⊥α,n∥α,那么m⊥n
上面命题中,正确的序号为(  )
A.①②B.①③C.③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知F1,F2是定点,|F1F2|=16,动点M满足|MF1|+|MF2|=16,则动点M的轨迹是(  )
A.椭圆B.直线C.D.线段

查看答案和解析>>

同步练习册答案