分析 (Ⅰ)在△ABD中,由已知结合余弦定理可得BD2=3AD2,进一步得到AB2=AD2+BD2,可得BD⊥AD.再由PD⊥平面ABCD,可得PD⊥BD.由线面垂直的判定可得
BD⊥平面PAD,则PA⊥BD;
(Ⅱ)由PD⊥平面ABCD,知∠PCD为PC与平面ABCD所称的角.在Rt△BAD中,求解直角三角形得AB=2,则DC=2,则tan∠PCD可求.
解答 (Ⅰ)证明:在△ABD中,∠DAB=60°,AB=2AD,
由余弦定理可得:BD2=AB2+AD2-2AB•AD•cos∠DAB,
∴BD2=5AD2-2AD2=3AD2,则AB2=AD2+BD2,即BD⊥AD.
又PD⊥平面ABCD,∴PD⊥BD.
∵PD∩AD=D,∴BD⊥平面PAD,则PA⊥BD;
(Ⅱ)解:∵PD⊥平面ABCD,∴∠PCD为PC与平面ABCD所称的角.
在Rt△BAD中,AD=1,∠DAB=60°,
∴AB=2,则DC=2,
∴tan∠PCD=$\frac{PD}{DC}=\frac{1}{2}$.
点评 本题考查直线与平面垂直的判定与性质,考查空间想象能力和思维能力,属中档题.
科目:高中数学 来源: 题型:选择题
A. | 7 | B. | $\frac{11}{2}$ | C. | 1 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{5}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $({-∞,-\frac{1}{4}}]$ | B. | $[{-\frac{1}{4},1}]$ | C. | [1,+∞) | D. | $({-∞,-\frac{1}{4}}]及[{1,+∞})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ①② | B. | ①③ | C. | ③④ | D. | ②③④ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com