精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x≥0}\\{-{x}^{2}-2x,x<0}\end{array}\right.$.
(Ⅰ)判断f(x)的奇偶性;
(Ⅱ)设函数f(x)在[t,t+4](t∈R)上的最大值为g(t),求g(t)的解析式.

分析 (Ⅰ)根据函数奇偶性的定义即可判断f(x)的奇偶性;
(Ⅱ)分别讨论区间[t,t+4]与函数单调区间的关系,结合一元二次函数单调性的性质进行求解即可.

解答 解:(Ⅰ)当x=0时,f(0)=0,
若x<0,则-x>0,
则f(-x)=x2+2x=-(-x2-2x)=-f(x),
若x>0,则-x<0,
则f(-x)=-x2+2x=-(x2-2x)=-f(x),
综上f(-x)=-f(x),即f(x)为奇函数性;
(Ⅱ)作出函数f(x)的图象如图:
由图象知当x=-1时,函数f(x)=1,当x=1时,f(x)=-1,
当x≥0时,由f(x)=x2-2x=1,得x2-2x-1=0,此时x=1+$\sqrt{2}$,此时1+$\sqrt{2}$-(-1)=2+$\sqrt{2}$<4,
当x<0时,由f(x)=-x2-2x=-1,得x2+2x-1=0,此时x=-1-$\sqrt{2}$,此时1-(-1-$\sqrt{2}$)=2+$\sqrt{2}$<4,
而区间[t,t+4]长度为4,区间[t,t+4]的中点为x=t+2,
①若t≤-1,且t+4≥1+$\sqrt{2}$,即$\sqrt{2}-$3≤t≤-1时,此时函数在[t,t+4]上的最大值为g(t)=f(t+4)=(t+4)2-2(t+4)=t2+6t+8,
②若-1≤t+4≤1+$\sqrt{2}$,即-5≤t≤$\sqrt{2}$-3,时,此时函数在[t,t+4]上的最大值为g(t)=f(-1)=1,
③若t+4≤-1,即t≤-5时,此时函数在[t,t+4]上为增函数,此时的最大值为g(t)=f(t+4)=(t+4)2-2(t+4)=t2+6t+8.

点评 本题主要考查函数奇偶性的应用以及函数在闭区间上的最值,利用分类讨论的思想是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.下列函数中,对于任意x∈R,同时满足条件f(x)=f(-x)和f(x+π)=f(x)的函数是(  )
A.f(x)=sinxB.f(x)=sin2xC.f(x)=cosxD.f(x)=cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设f(x)是定义在R上的函数,则“函数f(x)为偶函数”是“函数xf(x)为奇函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=90°,∠EAC=60°,AB=AC.
(1)在直线AE上是否存在一点P,使得CP⊥平面ABE?请证明你的结论;
(2)求直线BC与平面ABE所成角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,在直角三角形SOC中,直角边OC的长为4,SC为斜边,OB⊥SC,现将三角形SOC绕SO旋转一周,若△SOC形成的几何体的体积为V,△SOB形成的体积为$\frac{V}{4}$,则V=$\frac{64π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.椭圆$\frac{x^2}{4}+\frac{y^2}{2+k}=1$的离心率为$\frac{1}{2}$,则k的值为(  )
A.$-\frac{10}{3}$B.$\frac{10}{3}$C.$\frac{10}{3}$或1D.$-\frac{10}{3}$或1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)={log_a}\frac{x-1}{x+1}$(其中a>0且a≠1).
(1)讨论函数f(x)的奇偶性;
(2)已知关于x的方程${log_a}\frac{m}{(x+1)(7-x)}=f(x)$在区间[2,6]上有实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设A={x∈N|1≤x<7},则下列正确的是(  )
A.7∈AB.0∈AC.3∉AD.3.5∉A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x)=-$\frac{1}{3}$x3+2x2+2x,若存在满足-1≤x0≤3的实数x0,使得曲线y=f(x)在点(x0,f(x0))处的切线与直线x+my-10=0垂直,则实数m的取值范围是(  )
A.[6,+∞)B.[-∞,2]C.[-3,6]D.[5,6]

查看答案和解析>>

同步练习册答案