精英家教网 > 高中数学 > 题目详情
已知定点A(-1,0),F(2,0),定直线l:x=
12
,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N.
(Ⅰ)求E的方程;
(Ⅱ)试判断以线段MN为直径的圆是否过点F,并说明理由.
分析:(I)设P(x,y),欲求点P的轨迹方程,只须求出x,y之间的关系式即可,结合题中条件:“动点P与点F的距离是它到直线l的距离的2倍”利用距离公式即得;
(II)先分类讨论:①当直线BC与x轴不垂直时;②当直线BC与x轴垂直时,对于第①种情形,设BC的方程为y=k(x-2),将直线的方程代入双曲线的方程,消去y得到关于x的一元二次方程,再结合向量垂直的关系利用向量的坐标运算即可求得结论,从而解决问题.对于第②种情形,由于直线方程较简单,直接代入计算即可验证.
解答:解:(I)设P(x,y),则
(x-2)2+y2
=2|x-
1
2
|

化简得x2-
y2
3
=1(y≠0);(4分)
(II)①当直线BC与x轴不垂直时,设BC的方程为y=k(x-2)(k≠0)
与双曲线x2-
y2
3
=1联立消去y得(3-k2)x2+4k2x-(4k2+3)=0
由题意知3-k2≠0且△>0
设B(x1,y1),C(x2,y2),则
x1+x2=
4k2
k2-3
x1x2=
4k2+3
k2-3

y1y2=k2(x1-2)(x2-2)=k2[x1x2-2(x1+x2)+4]=k2
4k2+3
k2-3
-
8k2
k2-3
+4)=
-9k2
k2-3

因为x1、x2≠-1,所以直线AB的方程为y=
y1
x1+1
(x+1)
因此M点的坐标为(
1
2
3y1
2(x1+1)
FM
=(-
3
2
3y1
2(x1+1)
)

同理可得
FN
=(-
3
2
3y2
2(x2+1)
)

因此
FM
FN
=(-
3
2
)2+
9y1y2
2(x1+1)(x2+1)
=
4
9
+
-81k2
k2-3
4(
4k2+3
k2-3
+
4k2
k2-3
+1)
=0
②当直线BC与x轴垂直时,直线方程为x=2,则B(2,3),C(2,-3)
AB的方程为y=x+1,因此M点的坐标为(
1
2
3
2
),
FM
=(-
3
2
3
2
)

同理可得
FN
=(-
3
2
,-
3
2
)

因此
FM
FN
=(-
3
2
)2+
3
2
×(-
3
2
)
=0
综上
FM
FN
=0,即FM⊥FN
故以线段MN为直径的圆经过点F.(12分)
点评:本小题主要考查直线、轨迹方程、双曲线等基础知识,考查平面解析几何的思想方法及推理运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知定点A(1,0),定圆C:(x+1)2+y2=8,M为圆C上的一个动点,点P在线段AM上,点N在线段CM上,且满足
AM
=2
AP
NP
AM
=0
,则点N的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax
x+b
,且f(1)=1,f(-2)=4.
(1)求a、b的值;
(2)已知定点A(1,0),设点P(x,y)是函数y=f(x)(x<-1)图象上的任意一点,求|AP|的最小值,并求此时点P的坐标;
(3)当x∈[1,2]时,不等式f(x)≤
2m
(x+1)|x-m|
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点A(1,0)和定直线x=-1上的两个动点E、F,满足
AE
AF
,动点P满足
EP
OA
FO
OP
(其中O为坐标原点).
(1)求动点P的轨迹C的方程;
(2)过点B(0,2)的直线l与(1)中轨迹C相交于两个不同的点M、N,若
AM
AN
<0
,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点A(1,0),定直线l:x=5,动点M(x,y)
(Ⅰ)若M到点A的距离与M到直线l的距离之比为
5
5
,试求M的轨迹曲线C1的方程.
(Ⅱ)若曲线C2是以C1的焦点为顶点,且以C1的顶点为焦点,试求曲线C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点A(1,0)和定圆B:x2+y2+2x-15=0,动圆P和定圆B相切并过A点,
(1)求动圆P的圆心P的轨迹C的方程.
(2)设Q是轨迹C上任意一点,求∠AQB的最大值.

查看答案和解析>>

同步练习册答案