精英家教网 > 高中数学 > 题目详情
13.直三棱柱ABC-A1B1C1中,∠BAC=90°,M,N分别是A1B1,A1C1的中点,BA=CA=CC1,则BM与AN所成角的余弦值为(  )
A.$\frac{4}{5}$B.$\frac{1}{10}$C.$\frac{{3\sqrt{10}}}{10}$D.$\frac{{\sqrt{2}}}{2}$

分析 已知ABC-A1B1C1是直三棱柱,取BC的中点0,连接A0,NM,BM,BM∥NO,BC∥NM,那么AN和NO所成角即为BM与AN所成角.求出边长,利用余弦定理求解角的大小.

解答 解:∵M,N分别是A1B1,A1C1的中点,
取BC的中点0,连接AO,NM,BM,
∴BM∥NO,BC∥NM且BC=2NM,
那么AN和NO所成角即为BM与AN所成角.
设BA=CA=CC1=2,∠BAC=90°,ABC-A1B1C1是直三棱柱,
∴AO=$\sqrt{2}$,AN=$\sqrt{5}$,BM=NO=$\sqrt{5}$,
∴cos∠ANO=$\frac{5+5-2}{2•\sqrt{5•\sqrt{5}}}$=$\frac{4}{5}$,
故选:A.

点评 本题考查异面直线所成角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=cos2(x+$\frac{π}{12}$),g(x)=1+$\frac{1}{2}$sin2x.
(1)设x=x0是函数y=f(x)图象的一条对称轴,求g(x0)的值.
(2)求函数h(x)=f(x)+g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若椭圆$\frac{x^2}{3}+\frac{y^2}{m}=1$与直线x+2y-2=0有两个不同的交点,则m的取值范围是($\frac{1}{4}$,3)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则BD(  )cm.
A.5B.$\frac{16}{5}$C.$\frac{6}{5}$D.$\frac{17}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:
273830373531
332938342836
(1)画出茎叶图,由茎叶图你能获得哪些信息?
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、极差、方差,并判断选谁参加比赛比较合适?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a,b∈R+,且$a+b+\frac{1}{a}+\frac{1}{b}=5$,则a+b的取值范围是(  )
A.[1,4]B.[2,+∞)C.(2,4)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设f(x)是定义在R上的偶函数,对任意的x∈R,都有f(x-2)=f(x+2),且当x∈[-2,0]时,$f(x)={({\frac{1}{2}})^x}-1$.若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则实数a的取值范围是(  )
A.(1,2)B.(2,+∞)C.$({1,\root{4}{3}})$D.$({\root{4}{3},2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2clnx-x2(c∈R).
(1)讨论函数f(x)的单调区间;
(2)若c=1,设函数g(x)=f(x)-mx的图象与x轴交于A(x1,0),B(x2,0)两点,且0<x1<x2,又y=g'(x)是y=g(x)的导函数,若正常数a,b满足a+b=1,b≥a,证明:g'(ax1+bx2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1533石,验得米内夹谷,抽样取米一把,数得254粒内夹谷56粒,则这批米内夹谷约为(  )
A.1365石B.338石C.168石D.134石

查看答案和解析>>

同步练习册答案