精英家教网 > 高中数学 > 题目详情
欧洲很多国家及美国已经要求禁止在校园出售软饮料,禁止向中小学生销售可口可乐等高热量碳酸饮料,原因是这些饮料被认为是造成儿童 肥胖问题日益严重的主要原因之一.为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到列联表:平均每天喝500mL以上为常喝,体重超过50kg为肥胖.
常喝不常喝合计
肥胖2
不肥胖18
合计30
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为
4
15

(1)请将列联表补充完整
(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由
(3)现从常喝碳酸饮料且肥胖的学生中(2名女生),抽取2人参加电视节目,则正好抽到一男一女的概率是多少?
参考数据:
P(K2≥K)0.150.100.050.0250.0100.0050.001
K2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)
考点:独立性检验的应用
专题:应用题,概率与统计
分析:(1)根据全部30人中随机抽取1人看营养说明的学生的概率为
4
15
,做出看营养说明的人数,这样用总人数减去看营养说明的人数,剩下的是不看的,根据所给的另外两个数字,填上所有数字.
(2)根据列联表所给的数据,代入求观测值的公式,把观测值同临界值进行比较,得到有99.5%的把握说看营养说明与性别有关.
(3)利用列举法,求出基本事件的个数,即可求出正好抽到一男一女的概率.
解答: 解:(1)设常喝碳酸饮料肥胖的学生有x人,
x+3
30
=
4
15
,∴x=6;
常喝不常喝合计
肥胖628
不胖41822
合计102030
-------------(3分)
(2)由已知数据可求得:K2=
30(6×18-2×4)2
10×20×8×22
≈8.522>7.879
因此有99.5%的把握认为肥胖与常喝碳酸饮料有关.-------------(7分)
(3)设常喝碳酸饮料的肥胖者男生为A、B、C、D,女生为E、F,则任取两人有
AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF,共15种.其中一男一女有AE,AF,BE,BF,CE,CF,DE,DF.故抽出一男一女的概率是P=
8
15
------------(12分)
点评:本题考查画出列联表,考查等可能事件的概率,考查独立性检验,在求观测值时,要注意数字的代入和运算不要出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数g(x)=
1
6
x3+
1
2
(a-2)x2,h(x)=2alnx,f(x)=g′(x)-h(x).
(1)当a∈R时,讨论函数f(x)的单调性.
(2)是否存在实数a,对任意的x1,x2∈(0,+∞),且x1≠x2,都有
f(x2)-f(x1)
x1-x2
<a.若存在,求出a的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆”.已知椭圆C的离心率为
3
2
,且经过点(0,1).
(1)请求出椭圆C的标准方程;
(2)若过点P(0,m)(m>0)的直线l与椭圆C有且只有一个公共点,且l被椭圆C的伴随圆C1所截得的弦长为2
2
,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的面积为1,且
AB•
CB
=-2,则角B的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,对任意n∈N*,a1+a2+…+an=2n-1,则a12+a22+…+an2等于(  )
A、(2n-1)2
B、
(2n-1)2
3
C、4n-1
D、
4n-1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)在R上有意义,对于给定的正数K,定义fk(x)=
f(x),f(x)≥k
k,f(x)<k
,取函数f(x)=2+x+e-x,如对任意的x∈R恒有fk(X)=f(x).则K的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,1)、B(1,2)、C(-2,-1)、D(3,4),则向量
CD
AB
方向上的投影(  )
A、
3
2
2
B、3
5
C、-
3
2
2
D、-3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论:
①已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是
a
b
=-3;
②命题“设a,b∈R,若a+b≠6,则a≠3或b≠3”是一个假命题;
③函数f(x)=lg(x+
1+x2
)是奇函数;
④在△ABC中,若sinAcosB=sinC,则△ABC是直角三角形;
⑤“m>n>0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆”的充要条件;
⑥已知
a
b
为平面上两个不共线的向量,p:|
a
+2
b
|=|
a
-2
b
|;q:
a
b
,则p是q的必要不充分条件.
其中正确结论的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数h(x)=2sin(2x+
π
4
)的图象向右平移
π
4
个单位,再向上平移2个单位,得到函数f(x)的图象,则f(
π
4
)=(  )
A、4
B、2-
2
C、
2
-2
D、2+
2

查看答案和解析>>

同步练习册答案