精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱台ABO﹣A1B1O1中,侧面AOO1A1与侧面OBB1O1是全等的直角梯形,且OO1⊥OB,OO1⊥OA,平面AOO1A1⊥平面OBB1O1 , OB=3,O1B1=1,OO1=

(1)证明:AB1⊥BO1
(2)求直线AO1与平面AOB1所成的角的正切值;
(3)求二面角O﹣AB1﹣O1的余弦值.

【答案】
(1)证明:由题设知OA⊥OO1,且平面AOO1A1⊥平面OBB1O1

平面AOO1A1∩平面OBB1O1=OO1

则OA⊥平面OBB1O1,所以OA⊥OB,OA⊥BO1

又因为 .O1B1=1,OB=3,

所以∠OO1B=60°,∠O1OB1=30°,

从而OB1⊥BO1,又因为OA⊥BO1,OB1∩OA=O,

故BO1⊥平面AOB1,又AB1平面AOB1,故AB1⊥BO1


(2)解:以O为原点,OA、OB、OO1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,

如图,则A(3,0,0),B(0,3,0),B1(0,1, ),O1(0,0, ).

由(1)知BO1⊥平面OA B1,从而 是平面OA B1的一个法向量.

设直线AO1与平面AOB1所成的角为α,

.cosα= =

tanα= =

∴直线AO1与平面AOB1所成的角的正切值为


(3)解:由(II)知 是平面OA B1的一个法向量.且

是平面O1A B1的一个法向量,

,得

设二面角O﹣AB1﹣O1的大小为,

则cosθ=cos<, >=

即二面角O﹣AB1﹣O1的余弦值是


【解析】(1)推导出OA⊥OB,OA⊥BO1 , OB1⊥BO1 , OA⊥BO1 , 从而BO1⊥平面AOB1 , 由此能证明AB1⊥BO1 . (2)以O为原点,OA、OB、OO1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,利用向量法能求出直线AO1与平面AOB1所成的角的正切值.(3)求出平面OA B1的一个法向量和平面O1A B1的一个法向量,利用向量法能求出二面角O﹣AB1﹣O1的余弦值.
【考点精析】本题主要考查了空间角的异面直线所成的角的相关知识点,需要掌握已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着资本市场的强势进入,互联网共享单车忽如一夜春风来,遍布了各个城市的大街小巷.为了解共享单车在市的使用情况,某调研机构在该市随机抽取了位市民进行调查,得到的列联表如下:

经常使用

偶尔或不用

合计

岁及以下的人数

岁以上的人数

合计

(1)根据以上数据,能否在犯错误的概率不超过的前提下认为使用共享单车的情况与年龄有关?

(2)现从所抽取的岁以上的市民中利用分层抽样的方法再抽取位市民,从这位市民中随机选出位市民赠送礼品,求选出的位市民中至少有位市民经常使用共享单车的概率.

参考公式及数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项都大于1,且a1=2,a ﹣an+1﹣a +1=0(n∈N*).
(1)求证: ≤an<an+1≤n+2;
(2)求证: + + +…+ <1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项都大于1,且a1=2,a ﹣an+1﹣a +1=0(n∈N*).
(1)求证: ≤an<an+1≤n+2;
(2)求证: + + +…+ <1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接2016年“猴”年的到来,某电视台举办猜奖活动,参与者需先后回答两道选择题,问题A有三个选项,问题B有四个选项,每题只有一个选项是正确的,正确回答问题A可获奖金1千元,正确回答问题B可获奖金2千元.活动规定:参与者可任意选择回答问题的顺序,如果第一个问题回答正确,则继续答题,否则该参与者猜奖活动终止.假设某参与者在回答问题前,选择每道题的每个选项的机会是等可能的.
(Ⅰ)如果该参与者先回答问题A,求其恰好获得奖金1千元的概率;
(Ⅱ)试确定哪种回答问题的顺序能使该参与者获奖金额的期望值较大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知存在常数,那么函数上是减函数,在上是增函数,再由函数的奇偶性可知在上是增函数,在上是减函数.

(1)判断函数的单调性,并证明:

(2)将前述的函数推广为更为一般形式的函数,使都是的特例,研究的单调性(只须归纳出结论,不必推理证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部

竞选.

)设所选3人中女生人数为,求的分布列及数学期望;

)在男生甲被选中的情况下,求女生乙也被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,命题p:x∈[-2,-1],x2-a≥0,命题q:

(1)若命题p为真命题,求实数a的取值范围;

(2)若命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,AB=AD=AP=2CD=2,M是棱PB上一点.
(Ⅰ)若BM=2MP,求证:PD∥平面MAC;
(Ⅱ)若平面PAB⊥平面ABCD,平面PAD⊥平面ABCD,求证:PA⊥平面ABCD;
(Ⅲ)在(Ⅱ)的条件下,若二面角B﹣AC﹣M的余弦值为 ,求 的值.

查看答案和解析>>

同步练习册答案