精英家教网 > 高中数学 > 题目详情

已知F1,F2是椭圆C:数学公式=1(a>b>0)的左、右焦点,点P(-数学公式,1)在椭圆上,线段PF2与y轴的交点M满足数学公式
(1)求椭圆C的方程.
(2)椭圆C上任一动点M(x0,y0)关于直线y=2x的对称点为M1(x1,y1),求3x1-4y1的取值范围.

解:(1)由已知,点P(-,1)在椭圆上
∴有+=1①(1分)
,M在y轴上,
∴M为P、F2的中点,(2分)
∴-+c=0,c=.(3分)
∴由a2-b2=2,②(4分)
解①②,解得b2=2(b2=-1舍去),∴a2=4
故所求椭圆C的方程为+=1.(6分)
(2)∵点M(x0,y0)关于直线y=2x的对称点为M(x1,y1),
(8分)
解得(10分)
∴3x1-4y1=-5x0(11分)
∵点P(x0,y0)在椭圆C:+=1上,∴-2≤x0≤2∴-10≤-5x0≤10.
即3x1-4y1的取值范围为[-10,10].(12分)
分析:(1)由已知,点P(-,1)在椭圆上,又,M在y轴上,M为P、F2的中点,由此解得b2=2,a2=4.从而能得到
所求椭圆C的方程.
(2)点M(x0,y0)关于直线y=2x的对称点为M(x1,y1),由题设能导出3x1-4y1=-5x0,由点P(x0,y0)在椭圆C上,知-2≤x0≤2.由此可知3x1-4y1的取值范围为[-10,10].
点评:本题考查直线和圆锥曲线的综合应用,解题时要认真审题,仔细解答,注意公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点,若在椭圆上存在一点P,使∠F1PF2=120°,则椭圆离心率的范围是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆
y2
a2
+
x2
b2
=1(a>b>0)
的两个焦点,若椭圆上存在点P使得∠F1PF2=120°,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆的两个焦点.△F1AB为等边三角形,A,B是椭圆上两点且AB过F2,则椭圆离心率是
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 F1、F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点,椭圆上存在一点P,使得SF1PF2=
3
b2
,则该椭圆的离心率的取值范围是
[
3
2
,1)
[
3
2
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
2
+y2=1
的两个焦点,点P是椭圆上一个动点,那么|
PF1
+
PF2
|
的最小值是(  )

查看答案和解析>>

同步练习册答案