【题目】已知函数g(x)=aln x,f(x)=x3+x2+bx.
(1)若f(x)在区间[1,2]上不是单调函数,求实数b的范围;
(2)若对任意x∈[1,e],都有g(x)≥﹣x2+(a+2)x恒成立,求实数a的取值范围.
【答案】
(1)解:由f(x)=x3+x2+bx,得f′(x)=3x2+2x+b,
∵f(x)在区间[1,2]上不是单调函数,
∴f′(x)在[1,2]上最大值大于0,最小值小于0
f′(x)=3 +b﹣ ,
∴ ,
∴﹣16<b<﹣5;
(2)解:由g(x)≥﹣x2+(a+2)x,得(x﹣lnx)a≤x2﹣2x.
∵x∈[1,e],∴lnx≤1≤x,且等号不能同时取,
∴lnx<x,即x﹣lnx>0,
∴a≤ 恒成立,即a≤( )min.
令t(x)= ,x∈[1,e],求导得,t′(x)= ,
当x∈[1,e]时,x﹣1≥0,lnx≤1,x+2﹣lnx>0,从而t′(x)≥0,
∴t(x)在[1,e]上为增函数,tmin(x)=t(1)=﹣1,
∴a≤﹣1.
【解析】(1)求出函数的导数,根据f′(x)在[1,2]上最大值大于0,最小值小于0,得到关于b的不等式组,解出即可;(2)由g(x)≥﹣x2+(a+2)x分离出参数a后,转化为求函数最值,利用导数可求最值.
【考点精析】通过灵活运用利用导数研究函数的单调性和函数的最大(小)值与导数,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值即可以解答此题.
科目:高中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(x∈R)的部分对应值如表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 |
y | ﹣6 | 0 | 4 | 6 | 6 | 4 | 0 | ﹣6 |
则一元二次不等式ax2+bx+c>0的解集是( )
A.{x|x<﹣2,或x>3}
B.{x|x≤﹣2,或x≥3}
C.{x|﹣2<x<3}
D.{x|﹣2≤x≤3}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员成绩由好到差编号为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】请阅读下列材料:若两个正实数a1 , a2满足a12+a22=1,那么a1+a2 .证明:构造函数f(x)=(x﹣a1)2+(x﹣a2)2=2x2﹣2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以△≤0,从而得4(a1+a2)2﹣8≤0,所以a1+a2 .根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你能得到的结论为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,二面角α﹣l﹣β的大小为60°,A∈β,C∈α,且AB、CD都垂直于棱l,分别交棱l于B、D.已知BD=1,AB=2,CD=3,则AC= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com