精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)是定义在R上的偶函数,在(﹣∞,0]上单调递减,且f(﹣4)=0,则使得x|f(x)+f(﹣x)|<0的x的取值范围是

【答案】{x|x<0且x≠﹣4}
【解析】解:∵f(x)在(﹣∞,0]上为减函数,且f(x)为R上的偶函数,
∴f(x)在(0,+∞)上为增函数,
又f(4)=0,∴f(﹣4)=f(4)=0,
画出f(x)的示意图如图所示:
∵f(x)为R上的偶函数,
∴x|f(x)+f(﹣x)|<0等价于2x|f(x)|<0,
由图可得,不等式的解集是{x|x<0且x≠﹣4},
所以答案是:{x|x<0且x≠﹣4}.

【考点精析】本题主要考查了奇偶性与单调性的综合的相关知识点,需要掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线斜率为0.

(1)求

(2)若存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】证明f(x)=﹣x2+3在(0,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海上某货轮在A处看灯塔B在货轮的北偏东75°,距离为12海里;在A处看灯塔C在货轮的北偏西30°,距离为8海里;货轮向正北由A处行驶到D处时看灯塔B在货轮的北偏东120°.(要画图)
(1)A处与D处之间的距离;
(2)灯塔C与D处之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.某市场研究人员为了了解共享单车运营公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的拆线图.

(1)由拆线图可以看出,可用线性回归模型拟合月度市场占有率与月份代码之间的关系.求关于的线性回归方程,并预测公司2017年4月份(即时)的市场占有率;

(2)为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为1000元/辆和1200元/辆的两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致车辆报废年限各不相同.考虑到公司运营的经济效益,该公司决定先对两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:

车型 报废年限

1年

2年

3年

4年

总计

20

35

35

10

100

10

30

40

20

100

经测算,平均每辆单车每年可以带来收入500元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整年,且以频率作为每辆单车使用寿命的概率.如果你是 公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?

(参考公式:回归直线方程为,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4—4:坐标系与参数方程】

将圆上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.

Ⅰ)写出C的参数方程;

设直线C的交点为,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段的中点且与垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若直线是曲线与曲线的公切线,求

(2)设,若有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=x2﹣ax+b,其图象对称轴为直线x=2,且g(x)的最小值为﹣1,设f(x)=
(1)求实数a,b的值;
(2)若不等式f(3x)﹣t3x≥0在x∈[﹣2,2]上恒成立,求实数t的取值范围;
(3)若关于x的方程f(|2x﹣2|)+k ﹣3k=0有三个不同的实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2ax+2,x∈[﹣5,5].
(1)当a=﹣1时,求函数f(x)的最大值和最小值;
(2)当a∈R时,求函数f(x)的最小值.

查看答案和解析>>

同步练习册答案