【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,已知a=bcosC+csinB,b=2,则△ABC面积的最大值为 .
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆E: =1(a>b>0)的焦距为2,且过点( , ).
(1)求椭圆E的方程;
(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M. ①设直线OM的斜率为k1 , 直线BP的斜率为k2 , 求证:k1k2为定值;
②设过点M垂直于PB的直线为m.求证:直线m过定点,并求出定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AB⊥AD,AD∥BC,AD= BC=2,E在BC上,且BE= AB=1,侧棱PA⊥平面ABCD.
(1)求证:平面PDE⊥平面PAC;
(2)若△PAB为等腰直角三角形. (i)求直线PE与平面PAC所成角的正弦值;
(ii)求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 ,函数 ,若函数f(x)图象的两个相邻的对称轴间的距离为 .
(1)求函数f(x)的单调增区间;
(2)在△ABC中,角A,B,C所对的边分别是a,b,c,若△ABC满足f(A)=1,a=3,BC边上的中线长为3,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)当a=2时,求不等式f(x)<g(x)的解集;
(2)设a> ,且当x∈[ ,a]时,f(x)≤g(x),求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-5:不等式选讲]
已知函数f(x)=|ax﹣2|.
(Ⅰ)当a=2时,解不等式f(x)>x+1;
(Ⅱ)若关于x的不等式f(x)+f(﹣x)< 有实数解,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据某市地产数据研究院的数据显示,2016年该市新建住宅销售均价走势如图所示,为抑制房价过快上涨,政府从8月份采取宏观调控措施,10月份开始房价得到很好的抑制.
(Ⅰ)地产数据研究院研究发现,3月至7月的各月均价y(万元/平方米)与月份x之间具有较强的线性相关关系,试建立y关于x的回归方程(系数精确到0.01),政府若不调控,依次相关关系预测第12月份该市新建住宅销售均价;
(Ⅱ)地产数据研究院在2016年的12个月份中,随机抽取三个月份的数据作样本分析,若关注所抽三个月份的所属季度,记不同季度的个数为X,求X的分布列和数学期望.
参考数据: =25, =5.36, =0.64
回归方程 中斜率和截距的最小二乘估计公式分别为:
= , .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com