精英家教网 > 高中数学 > 题目详情
4.由抛物线y=x2-1,直线x=2,x=0,y=0,所围成图形的面积是2.

分析 由x2-1=0,得抛物线与x轴的交点坐标是(-1,0)和(1,0),用定积分表示面积,求出定积分的值即为所求的面积.

解答 解:由x2-1=0,得抛物线与x轴的交点坐标是(-1,0)和(1,0),
用定积分表示面积S=${∫}_{0}^{1}(1-{x}^{2})dx$+${∫}_{1}^{2}({x}^{2}-1)dx$=$(x-\frac{{x}^{3}}{3}){|}_{0}^{1}$+$(\frac{{x}^{3}}{3}-x){|}_{1}^{2}$=2,
故答案为:2.

点评 此题考查了定积分的运算,考查了数形结合的思想,利用定积分表示封闭图形的面积是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知奇函数f(x)满足f(x+2)=f(x),当x∈[0,1]时.,f(x)=x,则当x∈[k,k+1](k∈Z)时,函数f(x)的解析式是f(x)=$\left\{\begin{array}{l}{x-k,k是偶数}\\{x-k-1,k是奇数}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.曲线y=xex+1在点(0,1)处的切线方程是(  )
A.x-y+1=0B.2x-y+1=0C.x-y-1=0D.x-2y+2=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.解不等式:3${\;}^{{x}^{2}-2x-3}$<($\frac{1}{27}$)x-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在等差数列{an}中,若a1+a4+a7=45,a2+a5+a8=39,则a4+a7+a10=87.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|x-a|+2|x+b|(a>0,b>0)的最小值为1.
(1)求a+b的值;
(2)求$\frac{1}{a}$+$\frac{2}{b}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知空间单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$,$\overrightarrow{{e}_{1}}$⊥$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{2}}$⊥$\overrightarrow{{e}_{3}}$,$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{3}}$=$\frac{4}{5}$,若空间向量$\overrightarrow{m}$=x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$+z$\overrightarrow{{e}_{3}}$满足:$\overrightarrow{m}$•$\overrightarrow{{e}_{1}}$=4,$\overrightarrow{m}$•$\overrightarrow{{e}_{2}}$=3,$\overrightarrow{m}$•$\overrightarrow{{e}_{3}}$=5,则x+y+z=$\frac{208}{25}$,|$\overrightarrow{m}$|=$\frac{\sqrt{15874}}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知lg2=a,lg3=b,则用a,b表示lg15为(  )
A.b-a+1B.b(a-1)C.b-a-1D.b(1-a)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=x3+ax2+bx的图象与直线y=-3x+8相切于点P(2,2).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)设函数$g(x)=\frac{1}{3}{x^3}-\frac{m+1}{2}{x^2}+mx-\frac{1}{3}(m>1)$,对于?x1∈[0,4],?x2∈[0,4],使得f(x1)=g(x2),求实数m的取值范围.

查看答案和解析>>

同步练习册答案