精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为 分别为轴, 轴的交点.

(1)写出的直角坐标方程,并求的极坐标;

(2)设的中点为,求直线的极坐标方程.

【答案】(1)答案见解析;(2) .

【解析】试题分析:(1先利用三角函数的差角公式展开曲线的极坐标方程的左式,再利用直角坐标与极坐标间的关系,即利用 ,进行代换即得.(2)先在直角坐标系中算出中点的坐标,再利用直角坐标与极坐标间的关系求出其极坐标和直线的极坐标方程即可.

试题解析:(1)由

从而的直角坐标方程为,即

时, ,所以 时, ,所以.

2点的直角坐标为 点的直角坐标为

点的直角坐标为,则点的极坐标为

直线的极坐标方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的一条对称轴为,且最高点的纵坐标是

(1)求的最小值及此时函数的最小正周期、初相;

(2)在(1)的情况下,设,求函数上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校举办“中国诗词大赛”活动,某班派出甲乙两名选手同时参加比赛. 大赛设有15个诗词填空题,其中“唐诗”、“宋词”和“毛泽东诗词”各5个.每位选手从三类诗词中各任选1个进行作答,3个全答对选手得3分,答对2个选手得2分,答对1个选手得1分,一个都没答对选手得0分. 已知“唐诗”、“宋词”和“毛泽东诗词”中甲能答对的题目个数依次为5,4,3,乙能答对的题目个数依此为4,5,4,假设每人各题答对与否互不影响,甲乙两人答对与否也互不影响

求:(1)甲乙两人同时得到3分的概率;

2甲乙两人得分之和的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:极坐标与参数方程

已知平面直角坐标系,以为极点, 轴的非负半轴为极轴建立极坐标系,曲线的参数方程为为参数). 是曲线上两点,点的极坐标分别为.

1)写出曲线的普通方程和极坐标方程;

2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,已知曲线,将曲线上的点向左平移一个单位,然后纵坐标不变,横坐标轴伸长到原来的2倍,得到曲线,又已知直线是参数),且直线与曲线交于两点.

I)求曲线的直角坐标方程,并说明它是什么曲线;

II)设定点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实常数).

)若的极值点,求实数的取值范围.

)讨论函数上的单调性.

)若存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,底面分别是棱的中点,为棱上的一点,且//平面.

(1)的值;

(2)求证:

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)求证:当时,

(Ⅱ)若函数1+∞)上有唯一零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知有穷数列 ,若数列中各项都是集合的元素,则称该数列为数列.

对于数列,定义如下操作过程中任取两项 ,将的值添在的最后,然后删除 ,这样得到一个项的新数列,记作(约定:一个数也视作数列).若还是数列,可继续实施操作过程.得到的新数列记作 ,如此经过次操作后得到的新数列记作

)设 ,请写出的所有可能的结果.

)求证:对数列实施操作过程后得到的数列仍是数列.

)设 ,求的所有可能的结果,并说明理由.

查看答案和解析>>

同步练习册答案