精英家教网 > 高中数学 > 题目详情

已知命题p:存在x∈R,使tanx=1,命题q:x2-3x+2<0的解集是{x|1<x<2},下列结论:
①命题“p∧q”是真命题;
②命题“p∧¬q”是假命题;
③命题“¬p∨q”是真命题;
④命题“¬p∨¬q”是假命题.
其中正确的是


  1. A.
    ②③
  2. B.
    ①②④
  3. C.
    ①③④
  4. D.
    ①②③④
D
分析:先判断命题p,q的真假,再判断命题¬p,¬q的真假,根据真值表就可判断“p∧q”,“p∧¬q”“¬p∨q”,
“¬p∨¬q”的真假.
解答:∵当x=时,tanx=1,∴命题p为真命题.命题¬p为假命题.
∵x2-3x+2<0的解为1<x<2,∴命题q为真命题.命题¬q为假命题.
∴命题“p∧q”是真命题,命题“p∧¬q”是假命题,命题“¬p∨q”是真命题,命题“¬p∨¬q”是假命题.
故选D
点评:本题主要考查考查了简单命题和复合命题真假的判断,要熟记真值表.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:存在x∈(-∞,0),2x<3x;命题q:△ABC中,若sinA>sinB,则A>B,则下列命题为真命题的是(  )
A、p且qB、p或(﹁q)C、(﹁p)且qD、p且(﹁q)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:存在x∈R,(m+1)(x2+1)≤0,命题Q:任意x∈R,x2+mx+1>0恒成立.若P且Q为假命题,求实数m的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:存在x∈[1,2],使得x2-a≥0,命题q:指数函数y=(log2a)x是R上的增函数,若命题“p且q”是真命题,则实数a的取值范围是
(2,4](填{a|2<a≤4}或2<a≤4亦可)
(2,4](填{a|2<a≤4}或2<a≤4亦可)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:存在x∈R,x2+2ax+a≤0.若命题p是假命题,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“存在x∈R,使4x+2x+1+m=0”,若“非p”是假命题,则实数m的取值范围是
 

查看答案和解析>>

同步练习册答案