ÒÑÖªÍÖÔ²CµÄ×ó¡¢ÓÒ½¹µã·Ö±ðÊÇF1¡¢F2£¬ÀëÐÄÂÊΪ
3
2
£¬¹ýF1ÇÒ´¹Ö±ÓÚxÖáµÄÖ±Ïß±»ÍÖÔ²C½ØµÃµÄÏ߶γ¤Îª1£»
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£®
£¨¢ò£©ÈôA£¬B£¬CÊÇÍÖÔ²ÉϵÄÈý¸öµã£¬OÊÇ×ø±êÔ­µã£¬µ±µãBÊÇÍÖÔ²CµÄÓÒ¶¥µã£¬ÇÒËıßÐÎOABCΪÁâÐÎʱ£¬Çó´ËÁâÐεÄÃæ»ý£®
£¨¢ó£©ÉèµãpÊÇÍÖÔ²CÉϳý³¤Öá¶ËµãÍâµÄÈÎÒ»µã£¬Á¬½ÓPF1¡¢PF2£¬Éè¡ÏF1PF2µÄ½Çƽ·ÖÏßPM½»ÍÖÔ²CµÄ³¤ÖáÓÚµãM£¨m£¬0£©£¬ÇómµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨I£©ÓÉÒÑÖª¿ÉµÃ
2b2
a
=1
c
a
=
3
2
a2=b2+c2
£¬½âµÃ¼´¿É£»
£¨II£©ÓɵãBÊÇÍÖÔ²CµÄÓÒ¶¥µã£¬ÓÖËıßÐÎOABCΪÁâÐΣ¬È¡¶Ô½ÇÏßOBµÄÖеãQ£¬ÔòQ£¨1£¬0£©£®°Ñx=1£¬´úÈëÍÖÔ²µÄ·½³Ì£¬½âµÃy£®¼´¿ÉµÃµ½|AC|£®ÀûÓÃSÁâÐÎOABC=
1
2
|AC|•|OB|
¼´¿ÉµÃ³ö£»
£¨III£©ÓɽÇƽ·ÖÏßµÄÐÔÖʿɵÃ
|PF1|
|PF2|
=
|MF1|
|F2M|
=
m+c
c-m
£¬ÓÉÍÖÔ²µÄ¶¨Òå¿ÉµÃ|PF1|+|PF2|=2a=4£¬ÔÙÀûÓÃa-c£¼|PF2|£¼a+c£¬¼´¿ÉµÃ³ö£®
½â´ð£º½â£º£¨I£©ÉèÍÖÔ²µÄ±ê×¼·½³ÌΪ
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©£®F1£¨-c£¬0£©£¬F2£¨c£¬0£©£®
Áîx=-c£¬´úÈëÍÖÔ²·½³Ì¿ÉµÃ
c2
a2
+
y2
b2
=1
£¬½âµÃy=¡À
b2
a
£®
¡ß¹ýF1ÇÒ´¹Ö±ÓÚxÖáµÄÖ±Ïß±»ÍÖÔ²C½ØµÃµÄÏ߶γ¤Îª1£¬¡à
2b2
a
=1
£¬
ÓÉÀëÐÄÂÊΪ
3
2
£¬¿ÉµÃ
c
a
=
3
2
£®ÁªÁ¢
2b2
a
=1
c
a
=
3
2
a2=b2+c2
£¬½âµÃ
a=2b=2
c=
3
£®
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ
x2
4
+y2=1
£®
£¨II£©ÓɵãBÊÇÍÖÔ²CµÄÓÒ¶¥µã£¬¡àB£¨2£¬0£©£®ÓÖËıßÐÎOABCΪÁâÐΣ¬È¡¶Ô½ÇÏßOBµÄÖеãQ£¬ÔòQ£¨1£¬0£©£®
°Ñx=1£¬´úÈëÍÖÔ²µÄ·½³ÌµÃ
1
4
+y2=1
£¬½âµÃy=¡À
3
2
£®
È¡A(1£¬
3
2
)
£¬C(1£¬-
3
2
)
£®
¡à|AC|=2¡Á
3
2
=
3
£®
¡àSÁâÐÎOABC=
1
2
|AC|•|OB|
=
1
2
¡Á
3
¡Á2=
3
£®
£¨III£©ÓɽÇƽ·ÖÏßµÄÐÔÖʿɵÃ
|PF1|
|PF2|
=
|MF1|
|F2M|
=
m+c
c-m
=
m+
3
3
-m
£¬
ÓÉÍÖÔ²µÄ¶¨Òå¿ÉµÃ|PF1|+|PF2|=2a=4£¬
¡à
4-|PF2|
|PF2|
=
3
+m
3
-m
£¬½âµÃ
2
|PF2|
=
3
3
-m
£®
½âµÃ|PF2|=
2(
3
-m)
3
£®
¡ßa-c£¼|PF2|£¼a+c£¬
¡à2-
3
£¼
2(
3
-m)
3
£¼2+
3
£¬
½âµÃ-
3
2
£¼m£¼
3
2
£¬
¡àmµÄÈ¡Öµ·¶Î§ÊÇ(-
3
2
£¬
3
2
)
£®
µãÆÀ£º±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢ÁâÐεÄÃæ»ý¼ÆË㹫ʽ¡¢½Çƽ·ÖÏßµÄÐÔÖʶ¨ÀíµÈ»ù´¡ÖªÊ¶Óë»ù±¾¼¼ÄÜ·½·¨£¬¿¼²éÁ˼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²C£º
y2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=
3
2
£¬×óÓÒÁ½¸ö½¹·Ö±ðΪF1¡¢F2£®¹ýÓÒ½¹µãF2ÇÒÓëÖá´¹Ö±µÄ
Ö±ÏßÓëÍÖÔ²CÏཻM¡¢NÁ½µã£¬ÇÒ|MN|=1£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèÍÖÔ²CµÄ×󶥵ãΪA£¬Ï¶¥µãΪB£¬¶¯µãPÂú×ã
PA
AB
=m-4£¬£¨m¡ÊR£©ÊÔÇóµãPµÄ¹ì¼£·½³Ì£¬Ê¹µãB¹ØÓڸù켣µÄ¶Ô³ÆµãÂäÔÚÍÖÔ²CÉÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º¹ã¶«Ê¡½ÒÑôÊÐ2007Äê¸ßÖбÏÒµ°àµÚÒ»´Î¸ß¿¼Ä£Ä⿼ÊÔÌâ(Àí¿Æ) ÌâÐÍ£º044

Èçͼ£¬ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²µÄÀëÐÄÂÊe£½£¬×óÓÒÁ½¸ö½¹·Ö±ðΪF1¡¢F2£®¹ýÓÒ½¹µãF2ÇÒÓëxÖá´¹Ö±µÄÖ±ÏßÓëÍÖÔ²CÏཻM¡¢NÁ½µã£¬ÇÒ|MN|£½1£®

(¢ñ)ÇóÍÖÔ²CµÄ·½³Ì£»

(¢ò)ÉèÍÖÔ²CµÄ×󶥵ãΪA£¬Ï¶¥µãΪB£¬¶¯µãPÂú×㣬()ÊÔÇóµãPµÄ¹ì¼£·½³Ì£¬Ê¹µãB¹ØÓڸù켣µÄ¶Ô³ÆµãÂäÔÚÍÖÔ²CÉÏ.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2012-2013ѧÄê¹ã¶«Ê¡Õ¿½­¶þÖиßÈý£¨ÉÏ£©µÚÒ»´ÎÔ¿¼ÊýѧÊÔ¾í£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²C£º+=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=£¬×óÓÒÁ½¸ö½¹·Ö±ðΪF1¡¢F2£®¹ýÓÒ½¹µãF2ÇÒÓëÖá´¹Ö±µÄ
Ö±ÏßÓëÍÖÔ²CÏཻM¡¢NÁ½µã£¬ÇÒ|MN|=1£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèÍÖÔ²CµÄ×󶥵ãΪA£¬Ï¶¥µãΪB£¬¶¯µãPÂú×ã=m-4£¬£¨m¡ÊR£©ÊÔÇóµãPµÄ¹ì¼£·½³Ì£¬Ê¹µãB¹ØÓڸù켣µÄ¶Ô³ÆµãÂäÔÚÍÖÔ²CÉÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2010ÄêÄÚÃɹųà·åÊиßÈýͳ¿¼ÊýѧÊÔ¾í£¨ÎÄ¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²C£º+=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=£¬×óÓÒÁ½¸ö½¹·Ö±ðΪF1¡¢F2£®¹ýÓÒ½¹µãF2ÇÒÓëÖá´¹Ö±µÄ
Ö±ÏßÓëÍÖÔ²CÏཻM¡¢NÁ½µã£¬ÇÒ|MN|=1£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèÍÖÔ²CµÄ×󶥵ãΪA£¬Ï¶¥µãΪB£¬¶¯µãPÂú×ã=m-4£¬£¨m¡ÊR£©ÊÔÇóµãPµÄ¹ì¼£·½³Ì£¬Ê¹µãB¹ØÓڸù켣µÄ¶Ô³ÆµãÂäÔÚÍÖÔ²CÉÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸