【题目】已知椭圆的离心率为,椭圆C的长轴长为4.
(1)求椭圆C的方程;
(2)已知直线与椭圆C交于两点,是否存在实数k使得以线段为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.
【答案】(1);(2)存在,当时,以线段为直径的圆恰好经过坐标原点O.
【解析】
(1)设椭圆的焦半距为,利用离心率为,椭圆的长轴长为4.列出方程组求解,推出,即可得到椭圆的方程.
(2)存在实数使得以线段为直径的圆恰好经过坐标原点.设点,,,,将直线的方程代入,化简,利用韦达定理,结合向量的数量积为0,转化为:.求解即可.
解:(1)设椭圆的焦半距为c,则由题设,得,解得,
所以,故所求椭圆C的方程为
(2)存在实数k使得以线段为直径的圆恰好经过坐标原点O.理由如下:
设点,,将直线的方程代入,
并整理,得.(*)
则,
因为以线段为直径的圆恰好经过坐标原点O,所以,即.
又,于是,
解得,
经检验知:此时(*)式的,符合题意.
所以当时,以线段为直径的圆恰好经过坐标原点O
科目:高中数学 来源: 题型:
【题目】某企业生产某种电子设备的年固定成本为500(万元),每生产x台,需另投入成本(万元),当年产量不足60台时,(万元);当年产量不小于60台时,,若每台售价为100(万元)时,该厂当年生产的该电子设备能全部销售完.
(1)写出年利润y(万元)关于年产量x(台)的函数关系式;
(2)当年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一幅招贴画的示意图,其中ABCD是边长为的正方形,周围是四个全等的弓形.已知O为正方形的中心,G为AD的中点,点P在直线OG上,弧AD是以P为圆心、PA为半径的圆的一部分,OG的延长线交弧AD于点H.设弧AD的长为,.
(1)求关于的函数关系式;
(2)定义比值为招贴画的优美系数,当优美系数最大时,招贴画最优美.证明:当角满足:时,招贴画最优美.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市计划在一片空地上建一个集购物、餐饮、娱乐为一体的大型综合园区,如图,已知两个购物广场的占地都呈正方形,它们的面积分别为13公顷和8公顷;美食城和欢乐大世界的占地也都呈正方形,分别记它们的面积为公顷和公顷;由购物广场、美食城和欢乐大世界围成的两块公共绿地都呈三角形,分别记它们的面积为公顷和公顷.
(1)设,用关于的函数表示,并求在区间上的最大值的近似值(精确到0.001公顷);
(2)如果,并且,试分别求出、、、的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小学六年级学生的进行一分钟跳绳检测,现一班二班各有50人,根据检测结果绘出了一班的频数分布表和二班的频率分布直方图.
一班检测结果频数分布表:
跳绳个数区间 | |||||
频数 | 7 | 13 | 20 | 8 | 2 |
(1)根据给出的图表估计一班和二班检测结果的中位数(结果保留两位小数);
(2)跳绳个数不小于100个为优秀,填写下面2×2列联表,并根据列联表判断是否有95%的把握认为检测结果是否优秀与班级有关.
一班 | 二班 | 合计 | |
优秀 | |||
不优秀 | |||
合计 |
参考公式及数据:,
0.100 | 0.050 | 0.010 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com