精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(Ⅰ)讨论函数的单调性;

(Ⅱ)若对任意0恒成立,求实数的取值范围.

【答案】(Ⅰ)答案不唯一,具体见解析(Ⅱ)

【解析】

(Ⅰ)求出导函数,分别讨论00时的正负,即可求解。

(Ⅱ)当0为单调递增函数,且0,不满足题意

00恒成立,满足题意。

0时0恒成立,等价于,令,结合单调性,即可求解。

)解:函数的定义域为R

1)当0时,因为0,所以0,函数在()上单调递增;

2)当0时,由0,得,由0,得

所以,函数在()上单调递减,在()上单调递增.

(Ⅱ)解:(1)由(Ⅰ)知,当0时,在()上单调递增,

因为00,所以存在0),使0

所以,当)时,0,不合题意.

说明:当0时,1,则0≥0不恒成立.

2)当0时,0恒成立;

3)当0时,0恒成立,等价于对任意恒成立,

,则

1)时,0为增函数;当1)时,0

减函数,所以,于是,所以 0

综上,实数的取值范围为[0].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中,内角的对边分别为.若的面积为,且,则外接圆的面积为____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,定义为两点

切比雪夫距离,又设点上任意一点,称的最小值为点

直线切比雪夫距离,记作,给出下列三个命题:

对任意三点都有

已知点和直线,则

定点,动点满足),

则点的轨迹与直线为常数)有且仅有2个公共点

其中真命题的个数是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx=gx=x++a,其中a为常数.

1)若gx)≥0的解集为{x|0xx≥3},求a的值;

2)若x1∈(0,+∞),x2[12]使fx1)≤gx2)求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】魏晋时期数学家刘徽在为《九章算术》作注时,提出利用“牟合方盖”解决球体体积,“牟合方盖”由完全相同的四个曲面构成,相对的两个曲面在同一圆柱的侧面上,正视图和侧视图都是圆,每一个水平截面都是正方形,好似两个扣合(牟合)在一起的方形伞(方盖).二百多年后,南北朝时期数学家祖暅在前人研究的基础上提出了《祖暅原理》:“幂势既同,则积不容异”.意思是:两等高立方体,若在每一等高处的截面积都相等,则两立方体体积相等.如图有一牟合方盖,其正视图与侧视图都是半径为的圆,正边形是为体现其直观性所作的辅助线,根据祖暅原理,该牟合方盖体积为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(多选)某中学高一年级有20个班,每班50人;高二年级有30个班,每班45.甲就读于高一,乙就读于高二.学校计划从这两个年级中共抽取235人进行视力调查,下列说法中正确的有(

A.应该采用分层随机抽样法

B.高一、高二年级应分别抽取100人和135

C.乙被抽到的可能性比甲大

D.该问题中的总体是高一、高二年级的全体学生的视力

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C过点,且与圆外切于点,过点作圆C的两条切线PM,PN,切点为M,N.

(1)求圆C的标准方程;

(2)试问直线MN是否恒过定点?若过定点,请求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当时,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车的出现,为我们提供了一种新型的交通方式。某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的A城市和交通拥堵严重的B城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如图:

1)根据茎叶图,比较两城市满意度评分的平均值的大小及方差的大小(不要求计算出具体值,给出结论即可);

2)若得分不低于80分,则认为该用户对此种交通方式认可,否则认为该用户对此种交通方式不认可,请根据此样本完成此2×2列联表,并据此样本分析是否有95%的把握认为城市拥堵与认可共享单车有关;

A

B

合计

认可

不认可

合计

3)在AB城市对此种交通方式认可的用户中按照分层抽样的方法抽取6人,若在此6人中推荐2人参加单车维护志愿活动,求A城市中至少有1人的概率。

参考数据如下:(下面临界值表供参考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式,其中

查看答案和解析>>

同步练习册答案