精英家教网 > 高中数学 > 题目详情

【题目】定义在R上的函数f(x)满足f(0)=0,f(x)+f(1﹣x)=1,f( )= f(x)且当0≤x1<x2≤1时,f(x1)≤f(x2),则f( )等于(
A.
B.
C.
D.

【答案】C
【解析】解:∵f(0)=0,f(x)+f(1﹣x)=1,令x=1得:f(1)=1, 又f( )= f(x),
∴当x=1时,f( )= f(1)=
令x= ,由f( )= f(x)得:
f( )= f( )=
同理可求:f( )= f( )=
f( )=)= f( )=
f( )= f( )=
再令x= ,由f(x)+f(1﹣x)=1,可求得f( )=
∴f( )+f(1﹣ )=1,解得f( )=
令x= ,同理反复利用f( )= f(x),
可得f( )=)= f( )=
f( )= f( )=

f( )= f( )=
由①②可得:,有f( )=f( )=
∵0≤x1<x2≤1时f(x1)≤f(x2),而0< <1
所以有f( )≥f( )=
f( )≤f( )=
故f( )=
故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C的方程为: =1
(1)求双曲线C的离心率;
(2)求与双曲线C有公共的渐近线,且经过点A(﹣3,2 )的双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=log2(x+2)的定义域是(
A.[2,+∞)
B.[﹣2,+∞)
C.(﹣2,+∞)
D.(﹣∞,﹣2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,PA⊥PC,PB=AB=BC=2,∠ABC=120°, ,D为AC上一点,且AD=3DC.
(1)求证:PD⊥平面ABC;
(2)若E为PA中点,求直线CE与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CD与AB垂直,并与AB相交于点E,点F为弦CD上异于点E的任意一点,连接BF、AF并延长交⊙O于点M、N.
(1)求证:B、E、F、N四点共圆;
(2)求证:AC2+BFBM=AB2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为 ,{bn}为等差数列,且b1=4,b3=10,则数列 的前n项和Tn=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂准备生产甲、乙两种适销产品,每件销售收入分别为3千元,2千元.甲、乙产品都需要在A,B两种设备上加工,在每台A,B上加工一件甲产品所需工时分别为1小时、2小时,加工一件乙产品所需工时分别为2小时、1小时,A、B两种设备每月有效使用台时数分别为400小时和500小时.如何安排生产可使月收入最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角A,B,C的对边分别为a,b,c,且bcosC+ccosB=2acosB.
(1)求角B的大小;
(2)若 ,求△ABC的面积.

查看答案和解析>>

同步练习册答案