精英家教网 > 高中数学 > 题目详情
已知
(1)求f(x);
(2)判断f(x)的奇偶性和单调性;
(3)若当x∈(-1,1)时,有f(1-m)+f(1-m2)<0,求m的集合M.
【答案】分析:(1)换元法:令t=logax,则x=at,代入即可求得函数解析式;
(2)利用函数的奇偶性、单调性的定义即可判断;
(3)利用函数的奇偶性、单调性先把不等式转化为具体不等式,再考虑其定义域即可得到一不等式组,解出即可;
解答:解:(1)令t=logax,则x=at,代入,可得
∴函数的解析式
(2)函数f(x)的定义域为R,关于原点对称,

∴f(x)为奇函数;
设x1,x2∈R,且x1<x2
则f(x1)-f(x2)=-=
a>1时,∵x1<x2,∴>0,<0,1+>0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
所以f(x)单调递增;
(3)若当x∈(-1,1)时,有1-m∈(-1,1)且1-m2∈(-1,1),
f(1-m)+f(1-m2)<0可化为f(1-m)<-f(1-m2),
∵f(x)为奇函数,∴f(1-m)<f(m2-1),又f(x)为增函数,∴1-m<m2-1,
解得,1<m<
故M=
点评:本题考查函数奇偶性、单调性及其应用,考查抽象不等式的求解,考查学生灵活运用知识解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数学公式
(1)求f(x);
(2)判断f(x)的奇偶性和单调性;
(3)若当x∈(-1,1)时,有f(1-m)+f(1-m2)<0,求m的集合M.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省牡丹江一中高一(上)期末数学试卷(解析版) 题型:解答题

已知
(1)求f(x)在[0,2π]上的单调区间
(2)当x时,f(x)的最小值为2,求f(x)≥2成立的x的取值集合.
(3)若存在实数a,b,C,使得a[f(x)-m]+b[f(x-C)-m]=1,对任意x∈R恒成立,求的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省绵阳中学高一(下)第一次月考数学试卷(解析版) 题型:解答题

已知
(1)求f(x)的最小正周期;
(2)求f(x)的单调减区间;
(3)若函数g(x)=f(x)-m在区间上没有零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年江苏省扬州中学高三(上)开学考试数学试卷(解析版) 题型:解答题

已知
(1)求f(x)的解析式;
(2)若0≤θ≤π,求θ,使f(x)为偶函数;
(3)在(2)的条件下,求满足f(x)=1,x∈[-π,π]的x的集合.

查看答案和解析>>

同步练习册答案