精英家教网 > 高中数学 > 题目详情

【题目】过点作圆的切线,已知分别为切点,直线恰好经过椭圆的右焦点和下顶点,则直线方程为___________;椭圆的标准方程是__________

【答案】

【解析】

①当过点的直线斜率不存在时,直线方程为,切点的坐标

②当直线斜率存在时,设方程为,根据圆心到切线的距离等于半径,求出确定直线方程,直线方程与圆方程的联立,进一步求出切点的坐标,再求出方程,则椭圆的右焦点及下顶点可求,其标准方程可求.

解:①当过点的直线斜率不存在时,直线方程为,切点的坐标

②当直线斜率存在时,设方程为,即

根据直线与圆相切,圆心到切线的距离等于半径,得

可以得到切线斜率,即

直线方程与圆方程的联立

可以得切点的坐标

根据两点坐标可以得到直线方程为,(或利用过圆上一点作圆的两条切线,则过两切点的直线方程为

依题意,轴的交点即为椭圆右焦点,得

轴的交点即为椭圆下顶点坐标,所以

根据公式得

因此,椭圆方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】南北朝时代的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:幂势既同,则积不容异.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平行平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,如图,夹在两个平行平面之间的两个几何体的体积分别为,被平行于这两个平面的任意平面截得的两个截面面积分别为,则不总相等不相等的(

A.充分而不必要条件B.必要而不充分条件

C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:.已知函数,函数,则下列命题中真命题的个数是(

图象关于对称;

是奇函数;

上是增函数;

的值域是.

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求的单调区间;

2)当时,记函数,若函数至少有三个零点,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若方程恰有5个不同的实数根,则实数a的取值范围________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.

①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分;

②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;

③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关;

④乙同学连续九次测验成绩每一次均有明显进步.

其中正确的个数为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平行四边形中,,点在边上,则的最大值为( )

A. B. C. 0 D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为2,过点.

1)求椭圆的标准方程;

2)设椭圆的右焦点为F,定点,过点F且斜率不为零的直线l与椭圆交于AB两点,以线段AP为直径的圆与直线的另一个交点为Q,证明:直线BQ恒过一定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F1F2分别为双曲线Ca0b0)的左、右焦点,点Mx0y0)(x00)为C的渐近线与圆x2+y2a2的一个交点,O为坐标原点,若直线F1MC的右支交于点N,且|MN||NF2|+|OF2|,则双曲线C的离心率为_____

查看答案和解析>>

同步练习册答案