A. | 2 | B. | 4 | C. | 6 | D. | 8 |
分析 设侧棱AA1的长为x,A1E=t,则AE=x-t,由已知得t2-xt+4=0,由此利用根的判别式能求出侧棱AA1的长的最小值.
解答 解:设侧棱AA1的长为x,A1E=t,则AE=x-t,
∵长方体ABCD-A1B1C1D1的底面是边长为2的正方形,
∠C1EB=90°,
∴$C{E}^{2}+B{E}^{2}=B{{C}_{1}}^{2}$,
∴8+t2+4+(x-t)2=4+x2,
整理,得:t2-xt+4=0,
∵在侧棱AA1上至少存在一点E,使得∠C1EB=90°,
∴△=(-x)2-16≥0,
解得x≥4.或x≤-4(舍).
∴侧棱AA1的长的最小值为4.
故选:B.
点评 本题考查长方体的侧棱长的最小值的求法,是中档题,解题时要注意根的判别式的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{10}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\sqrt{5}$ | C. | $2\sqrt{5}$ | D. | $\frac{{\sqrt{5}}}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ($\frac{π}{3}$,$\frac{5π}{6}$) | B. | ($\frac{π}{6}$,$\frac{2π}{3}$) | C. | ($\frac{π}{2}$,π) | D. | ($\frac{2π}{3}$,π) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-$\frac{1}{2016}$,+∞) | B. | (-$\frac{1}{3}$,+∞) | C. | (-$\frac{1}{2}$,+∞) | D. | (-$\frac{1}{4}$,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com