精英家教网 > 高中数学 > 题目详情

【题目】已知函数,且函数是偶函数.

1)求的解析式;

2)若不等式上恒成立,求的取值范围;

3)若函数恰好有三个零点,求的值及该函数的零点.

【答案】123,零点为0-22

【解析】

1)由是偶函数,求出后可得

2)等式上恒成立,可用分离参数法转化为求函数最值;

(3)可换元化为关于)的方程,原函数有三个零点,即原方程有三个解,由对称性(或偶函数)知是一个解,即是新方程的一个根,由此可求得,从而求得另外的根,即求得函数的零点.

1)∵

.

是偶函数,∴,∴.,∴.

2)∵上恒成立,∴.

,则,∴.

3)令,则,方程可化为,即,也即.

又∵方程有三个实数根,

有一个根为2,∴.,解得.

,得,由,得

∴该函数的零点为0-22.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2a·4x-2x-1.

(1)当a=1时,解不等式f(x)>0;

(2)当a=,x∈[0,2]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区工会利用 “健步行APP”开展健步走积分奖励活动会员每天走5千步可获积分30分(不足5千步不积分),每多走2千步再积20分(不足2千步不积分)为了解会员的健步走情况,工会在某天从系统中随机抽取了1000名会员,统计了当天他们的步数,并将样本数据分为 九组,整理得到如下频率分布直方图

求当天这1000名会员中步数少于11千步的人数

从当天步数在 的会员中按分层抽样的方式抽取6人,再从这6人中随机抽取2人,求这2人积分之和不少于200分的概率;

写出该组数据的中位数(只写结果)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线截圆所得的弦长为.直线的方程为

(Ⅰ)求圆的方程;

(Ⅱ)若直线过定点,点在圆上,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某小区为美化环境,建设美丽家园,计划在一块半径为RR为常数)的扇形区域上,建个矩形的花坛CDEF和一个三角形的水池FCG.其中,O为圆心,,C,G,F在扇形圆弧上,D,E分别在半径OA,OB上,记OGCF,DE分别交于M,N,.

1)求△FCG的面积S关于的关系式,并写出定义域;

2)若R=10米,花坛每平方米的造价是300元,试问矩形花坛的最高造价是多少?(取

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是正方形, 平面 分别是线段 的中点, .

求证: 平面

求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动直:x+my-2m=0与动直线:mx-y-4m+2=0相交于点M,记动点M的轨迹为曲线C.

(1)求曲线C的方程;

(2)过点P(-1,0)作曲线C的两条切线,切点分别为A,B,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,且满足Sn+n=2annN*).

1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;

2)若bn=nan+n,数列{bn}的前n项和为Tn,求满足不等式n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题16分)某乡镇为了进行美丽乡村建设,规划在长为10千米的河流OC的一侧建一条观光带,观光带的前一部分为曲线段OAB,设曲线段OAB为函数(单位:千米)的图象,且曲线段的顶点为;观光带的后一部分为线段BC,如图所示.

(1)求曲线段OABC对应的函数的解析式;

(2)若计划在河流OC和观光带OABC之间新建一个如图所示的矩形绿化带MNPQ,绿化带由线段MQQPPN构成,其中点P在线段BC上.当OM长为多少时,绿化带的总长度最长?

查看答案和解析>>

同步练习册答案