精英家教网 > 高中数学 > 题目详情
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
,x∈R)的图象的一部分如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数y=f(x)+f(x+2)的最小正周期和最值.
考点:由y=Asin(ωx+φ)的部分图象确定其解析式,三角函数的周期性及其求法
专题:三角函数的图像与性质
分析:(Ⅰ)由图象知,A、T的值,求出ω及φ的值,即得f(x)的解析式;
(Ⅱ)由三角恒等变换,化简函数y,求出它的最小正周期与最值.
解答: 解:(Ⅰ)由图象知,A=2,
ω
=8,∴ω=
π
4

∴f(x)=2sin(
π
4
x+φ);
∵函数f(x)的图象过点(1,2),
π
4
×1+φ=
π
2
+2kπ,
∵|φ|<
π
2
,∴φ=
π
4

∴f(x)=2sin(
π
4
x+
π
4
);
(Ⅱ)由题意,函数y=2sin(
π
4
x+
π
4
)+2sin[
π
4
(x+2)+
π
4
]
=2sin(
π
4
x+
π
4
)+2cos(
π
4
x+
π
4

=2
2
cos
π
4
x,
∴最小正周期是8,
ymax=2
2
,ymin=-2
2
点评:本题考查了三角函数的图象与性质的应用问题,解题时还应用了三角函数的恒等变换公式,数形结合思想等,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,cosB=-
5
13
,cosC=
4
5

(1)求cosA的值;
(2)若|BC|=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的图象两相邻对称轴之间的距离是
π
2
,若将f(x)的图象先向右平移
π
6
个单位,再向上平移2个单位,所得函数g(x)为奇函数.
(1)求f(x)的解析式;
(2)求f(x)的单调区间;
(3)若对任意x∈[0,
π
3
],不等式f2(x)-(2+m)f(x)+2+m≤0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3x2-9x+1(x∈R).
(Ⅰ)求函数f(x)在点(0,f(0))处的切线方程;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx+2sin2x+3.
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)若f(
α
2
)=
26
5
,求sin(2α+
π
6
)的值;
(Ⅲ)当x∈[-
π
2
,0]时,若f(x)≥log2t恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{a2n-1}是公差为2的等差数列,数列{a2n}是公比为3的等比数列,数列{an}的前n项和为Sn(n∈N*),已知S3=a4,a3+a5=a4+2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若当n∈N*时,不等式2S2n-na2n-1<λa2n恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

点P在圆x2+y2=2上移动,PQ⊥x轴于Q,动点M满足
QP
=
2QM

(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)若动直线x-
2
y+m=0与曲线C交于A,B两点,在第一象限内曲线C上是否存在一点M使MA与MB的斜率互为相反数?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F是椭圆C的右焦点,A,B是椭圆短轴的两个端点,且△ABF是正三角形,
(Ⅰ)求椭圆C的离心率;
(Ⅱ)直线l与以AB为直径的圆O相切,并且被椭圆C截得的弦长的最大值为2
3
,求椭圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

乘积(a+b+c+d)(r+s+t)(x+y)展开后共有
 
项(用数字作答).

查看答案和解析>>

同步练习册答案