精英家教网 > 高中数学 > 题目详情

【题目】以边长为的正三角形的顶点为坐标原点另外两个顶点在抛物线过抛物线的焦点的直线过交拋物线两点.

1)求抛物线的方程

2求证 为定值

3)求线段的中点的轨迹方程.

【答案】1;(2证明见解析;3

【解析】试题分析:

(1)由题意结合几何关系列方程组可求得则抛物线的方程为.

(2)联立直线与抛物线的方程,利用韦达定理结合平面向量数量积的坐标运算计算可得为定值

(3) 设线段的中点为,则 消去参数可得中点的轨迹方程为.

试题解析:

1因为正三角形和抛物线都是轴对称图形且三角形的一个顶点扣抛物线的顶点重合所以,三角形的顶点关于轴对称如图所示.

可得

.

∴抛物线的方程为.

2)易知抛物线 的焦点设直线并设点.

可得

.

3)设线段的中点为

消去得线段的中点为的轨迹方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数 .若曲线在点处的切线方程为为自然对数的底数).

1)求函数的单调区间;

2)若关于的不等式在(0,+)上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线与直线垂直(其中为自然对数的底数)。

(Ⅰ)若在区间上存在极值,求实数的取值范围;

(Ⅱ)求证:当时,不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的焦点在x轴上,长轴长为4,离心率为 . (Ⅰ)求椭圆E的标准方程;
(Ⅱ)已知点A(0,1)和直线l:y=x+m,线段AB是椭圆E的一条弦且直线l垂直平分弦AB,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为V和V(如图所示).那么对于图中给定的t0和t1 , 下列判断中一定正确的是(
A.在t1时刻,甲车在乙车前面
B.t1时刻后,甲车在乙车后面
C.在t0时刻,两车的位置相同
D.t0时刻后,乙车在甲车前面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx﹣x,求函数f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=xlnx,g(x)=﹣x2+ax﹣3. (Ⅰ)求函数f(x)在[t,t+1](t>0)上的最小值;
(Ⅱ)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(Ⅲ)证明:对一切x∈(0,+∞),都有lnx> 成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产产品x件的总成本C(x)=1000+x2(万元),已知产品单价P(万元)与产品件数x满足:P2= ,生产100件这样的产品单价为50万元.
(1)设产量为x件时,总利润为L(x)(万元),求L(x)的解析式;
(2)产量x定为多少时总利润L(x)(万元)最大?并求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A、B、C为三个锐角,且A+B+C=π,若向量 =(2sinA﹣2,cosA+sinA)与向量 =(cosA﹣sinA,1+sinA)是共线向量. (Ⅰ)求角A;
(Ⅱ)求函数y=2sin2B+cos 的最大值.

查看答案和解析>>

同步练习册答案