精英家教网 > 高中数学 > 题目详情

【题目】选修45:不等式选讲

已知函数

1)当时,求不等式的解集;

2)若函数的值域为的取值范围

【答案】(1)(2)

【解析】试题分析:1分三种情况讨论,分别求解不等式组,然后求并集即可得结果;(2将函数化为分段函数,根据分类讨论思想结合分段函数的图象,求出分段函数的值域,根据集合的包含关系列不等式求解即可.

试题解析:(1

①当时,原不等式可化为,解得

②当时,原不等式可化为,解得,此时原不等式无解.

③当时,原不等式可化为,解得

综上可知,原不等式的解集为

2解法:时,

所以函数的值域

因为,所以解得

时,

所以函数的值域

因为,所以解得

综上可知, 的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:

服用A药的20位患者日平均增加的睡眠时间:

0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5

2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4

服用B药的20位患者日平均增加的睡眠时间:

3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4

1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5

(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?

(2)根据两组数据绘制茎叶图,从茎叶图看,哪种药的疗效更好?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,值域为,即,若,则称上封闭.

1)分别判断函数 上是否封闭,说明理由;

2)函数的定义域为,且存在反函数,若函数上封闭,且函数上也封闭,求实数的取值范围;

3)已知函数的定义域为,对任意,若,有恒成立,则称上是单射,已知函数上封闭且单射,并且满足 ,其中),,证明:存在的真子集,

,使得在所有)上封闭.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,我国“雾霾天气”频发,严重影响人们的身体健康.根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:

API

0~50

51~100

101~150

151~200

201~250

251~300

>300

级别

1

2

1

2

状况

轻微污染

轻度污染

中度污染

中度重污染

重度污染

对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]进行分组,得到频率分布直方图如图.

(1)求频率分布直方图中x的值;

(2)计算一年中空气质量分别为良和轻微污染的天数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知多面体的底面是边长为的菱形, 底面 ,且

1证明:平面平面

2若直线与平面所成的角为求二面角

的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修45:不等式选讲

已知函数

1)当时,求不等式的解集;

2)若函数的值域为的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,为正三角形,,,,平面.

)点在棱上,试确定点的位置,使得平面;

)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,若存在,使得,求实数的取值范围;

(2)若为正整数,方程的两个实数根满足,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子里有编号为的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号.

甲说:我无法确定.”

乙说:我也无法确定.”

甲听完乙的回答以后,甲又说:我可以确定了.”

根据以上信息, 你可以推断出抽取的两球中

A. 一定有3号球 B. 一定没有3号球 C. 可能有5号球 D. 可能有6号球

查看答案和解析>>

同步练习册答案