A. | 4 | B. | 2$\sqrt{2}$ | C. | 9 | D. | 18 |
分析 根据对数函数的图象和性质,可得P(4,-1),进而可得4m+n=1,由基本不等式,可得$\frac{1}{m}$+$\frac{1}{n}$的最小值.
解答 解:当x=4时,y=loga(x-3)-1=-1恒成立,
故函数y=loga(x-3)-1(a>0且a≠1)图象过定点P(4,-1),
由直线mx-ny-1=0(m>0,n>0)过点P得:
4m+n=1,
故$\frac{1}{m}$+$\frac{1}{n}$=($\frac{1}{m}$+$\frac{1}{n}$)(4m+n)=4+1+$\frac{n}{m}$+$\frac{4m}{n}$≥5+2$\sqrt{\frac{n}{m}•\frac{4m}{n}}$=9,
即$\frac{1}{m}$+$\frac{1}{n}$的最小值为9,
故选:C
点评 本题考查的知识点是对数函数的图象和性质,函数的最值及其几何意义,利用基本不等式求函数的最值,难度中档.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{6}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {1} | B. | {1,3} | C. | {1,3,6} | D. | {2,4,5} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ||
B. | ||
C. | ||
D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com