分析 (1)由已知函数y=x+$\frac{a}{x}$的单调区间,即可得到所求函数的单调区间;
(2)化简h(x)的函数式,再由已知结论,可得函数h(x)在$[\frac{1}{2},1]$单调递减,在[1,2]上单调递增,即可得到所求函数的最值;
(3)化简方程可得,h(x)=m或h(x)=2m,又函数h(x)在$[\frac{1}{2},1]$单调递减,在[1,2]单调递增,讨论0<m<8,m=8,8<m<16,16<m≤30,即可得到方程的根的个数.
解答 解:(1)根据条件,$f(x)={x^2}+\frac{a}{x^2}(a>0)$的单调递减区间是$(0,\root{4}{a}]$,
单调递增区间是$[\root{4}{a},+∞)$;
函数$g(x)={x^n}+\frac{a}{x^n}$的单调递减区间是$(0,\root{2n}{a}]$,单调递增区间是$[\root{2n}{a},+∞)$;
(2)$h(x)={({x^2}+\frac{1}{x})^3}+{(x+\frac{1}{x^2})^3}$=$({x^6}+\frac{1}{x^6})+4({x^3}+\frac{1}{x^3})+6$
由(1)可知,${x^6}+\frac{1}{x^6}$与$4({x^3}+\frac{1}{x^3})$均在$[\frac{1}{2},1]$单调递减,在[1,2]上单调递增,
则有函数h(x)在$[\frac{1}{2},1]$单调递减,在[1,2]上单调递增,
所以$h_{min}^{\;}=h(1)=16$,${h_{max}}=h(\frac{1}{2})=h(2)={(\frac{9}{2})^3}+{(\frac{9}{4})^3}=\frac{6561}{64}$;
(3)由h2(x)-3mh(x)+2m2=0可得(h(x)-m)(h(x)-2m)=0,
所以有h(x)=m或h(x)=2m,
又函数h(x)在$[\frac{1}{2},1]$单调递减,在[1,2]单调递增,
而$h(1)=16,h(\frac{1}{2})=h(2)=\frac{6561}{64}$,
所以当0<2m<16⇒0<m<8时,方程无实数根;
当2m=16⇒m=8时,有一个实数根;
当0<m<16,且60>2m>16即8<m<16,方程有两个实数根;
当m=16,2m=32,方程有三个实数根;
当$16<m≤30,2m≤60<\frac{6561}{64}$时,方程有四个实数根.
综上,①当0<m<8时,方程实根个数为0;
②当m=8时,方程实根个数为1;
③当8<m<16时,方程实根个数为2;
④当m=16,2m=32时,方程实根个数为3;
⑤当16<m≤30时,方程实根个数为4.
点评 本题考查函数的性质的运用:求单调区间和最值,考查函数方程的转化思想的运用,考查分类讨论的思想方法,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 150° | B. | 135° | C. | 120° | D. | 90° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-2,2) | B. | (5,7) | C. | (3,5) | D. | (1,3) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com