精英家教网 > 高中数学 > 题目详情
6.若正数x,y满足x+2y+4=4xy,且不等式(x+2y)a2+2a+2xy-34≥0恒成立,则实数a的取值范围是(  )
A.(-∞,-$\frac{3}{2}$]∪[$\frac{3}{2}$,+∞)B.(-∞,-3]∪[$\frac{3}{2}$,+∞)C.(-∞,-3]∪[$\frac{5}{2}$,+∞)D.(-∞,-$\frac{3}{2}$]∪[$\frac{5}{2}$,+∞)

分析 原不等式恒成立可化为xy≥$\frac{2{a}^{2}-a+17}{2{a}^{2}+1}$恒成立,由基本不等式结合不等式的解法可得xy≥2,故只需2≥$\frac{2{a}^{2}-a+17}{2{a}^{2}+1}$恒成立,解关于a的不等式可得.

解答 解:∵正实数x,y满足x+2y+4=4xy,可得x+2y=4xy-4,
∴不等式(x+2y)a2+2a+2xy-34≥0恒成立,
即(4xy-4)a2+2a+2xy-34≥0恒成立,
变形可得2xy(2a2+1)≥4a2-2a+34恒成立,
即xy≥$\frac{2{a}^{2}-a+17}{2{a}^{2}+1}$恒成立,
∵x>0,y>0,∴x+2y≥2$\sqrt{2xy}$,
∴4xy=x+2y+4≥4+2$\sqrt{2xy}$,
即2($\sqrt{xy}$)2-$\sqrt{2}$•$\sqrt{xy}$-2≥0,解不等式可得$\sqrt{xy}$≥$\sqrt{2}$,或$\sqrt{xy}$≤-$\frac{\sqrt{2}}{2}$(舍负)
可得xy≥2,要使xy≥$\frac{2{a}^{2}-a+17}{2{a}^{2}+1}$恒成立,只需2≥$\frac{2{a}^{2}-a+17}{2{a}^{2}+1}$恒成立,
化简可得2a2+a-15≥0,
即(a+3)(2a-5)≥0,解得a≤-3或a≥$\frac{5}{2}$,
故答案为:(-∞,-3]∪[$\frac{5}{2}$,+∞).
故选:C.

点评 本题考查基本不等式的应用,涉及恒成立问题,变形并求出需要的最小值是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数y=x2+mx-4,x∈[2,4]
(1)求函数的最小值g(m);
(2)若g(m)=10,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列命题中错误的是(  )
A.命题“若x2-5x+6=0,则x=2”的逆否命题是“若x≠2,则x2-5x+6≠0”
B.命题“角α的终边在第一象限,则α是锐角”的逆命题为真命题
C.已知命题p和q,若p∨q为假命题,则命题p与q中必一真一假
D.命题“若x>y,则x>|y|”的逆命题是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在下列各图中,两个变量具有线性相关关系的图是(  )
A.(1)(2)B.(1)(3)C.(2)(4)D.(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设全集U={-2,-1,0,1,2},集合M={y|y=2x},N={x|x2-x-2=0},则(∁UM)∩N═(  )
A.{-1}B.{2}C.{-1,2}D.{-1,-2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=$\sqrt{x-1}$+lg(2-x)的定义域是(  )
A.(-∞,1]∪(2,+∞)B.(1,2)C.[1,2)D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设全集为U,对于集合A,B,则“A∩B≡∅”是“存在集合C,使得A?C且B?∁UC”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线的焦点在x轴上,且经过点P$(\frac{1}{4},-1)$,
(1)求抛物线的标准方程;
(2)经过焦点F且倾斜角是$\frac{π}{4}$的直线L与抛物线相交于两点A和B,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.欲使函数 y=Asinωx(A>0,ω>0)在闭区间[0,1]上至少出现 25 个最小值,则ω的最小值为49.5π.

查看答案和解析>>

同步练习册答案