精英家教网 > 高中数学 > 题目详情

【题目】第96届(春季)全国糖酒商品交易会于2017年3月23日至25日在四川举办.交易会开始前,展馆附近一家川菜特色餐厅为了研究参会人数与餐厅所需原材料数量的关系,查阅了最近5次交易会的参会人数(万人)与餐厅所用原材料数量(袋),得到如下数据:

(Ⅰ)请根据所给五组数据,求出关于的线性回归方程

(Ⅱ)已知购买原材料的费用(元)与数量(袋)的关系为投入使用的每袋原材料相应的销售收入为600元,多余的原材料只能无偿返还.若餐厅原材料现恰好用完,据悉本次交易会大约有14万人参加,根据(Ⅰ)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润销售收入原材料费用).

(参考公式:

【答案】(1)(2)该餐厅应购买35袋原材料,才能获得最大利润,最大利润是10370元.

【解析】试题分析:

(1)利用题意可求得回归方程为.

(2)利用回归方程预测需要原材料34.2袋,结合分段函数讨论可得该餐厅应购买35袋原材料,才能获得最大利润,最大利润是10370元.

试题解析:

(Ⅰ)由数据,求得

所以关于的线性回归方程为.

(Ⅱ)由(Ⅰ)中求出的线性回归方程,当时,

即预计需要原材料34.2袋,

因为

所以,若,利润

时,利润 元;

,利润

时,利润 元;

综上所述,该餐厅应购买35袋原材料,才能获得最大利润,最大利润是10370元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一鲜花店根据一个月(30天)某种鲜花的日销售量与销售天数统计如下,将日销售量落入各组区间频率视为概率.

日销售量(枝)

销售天数

3天

5天

13天

6天

3天

(1)试求这30天中日销售量低于100枝的概率;

(2)若此花店在日销售量低于100枝的时候选择2天作促销活动,求这2天恰好是在日销售量低于50枝时的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若函数是奇函数,求实数的值;

(2)若对任意的实数,函数为实常数)的图象与函数的图象总相切于一个定点.

① 求的值;

② 对上的任意实数,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为 1, 的中点, 为线段上的动点,过点A、P、Q的平面截该正方体所得的截面记为.则下列命题正确的是__________(写出所有正确命题的编号).

①当时, 为四边形;②当时, 为等腰梯形;③当时, 为六边形;④当时, 的面积为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知,在直角坐标系中,直线的参数方程为为参数);在以坐标原点为极点, 轴的正半轴为极轴的极坐标系中,直线的极坐标方程是.

(Ⅰ)求证:

(Ⅱ)设点的极坐标为 为直线 的交点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
(1)请画出该几何体的三视图;
(2)求四棱锥B﹣CEPD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点,求证:
(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过变换后得曲线.

(1)求的方程;

(2)若为曲线上两点, 为坐标原点,直线的斜率分别为,求直线被圆截得弦长的最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是正四棱柱的一个截面,此截面与棱交于点 ,其中分别为棱上一点.

(1)证明:平面平面

(2)为线段上一点,若四面体与四棱锥的体积相等,求的长.

查看答案和解析>>

同步练习册答案