精英家教网 > 高中数学 > 题目详情

【题目】求下列函数的值域

1 2

3 4

5 6

7 8

9 10

11

【答案】(1);(2);(3);(4);(5);(6);(7);(8);(9);(10);(11).

【解析】

根据函数的特点,可利用换元法、基本初等函数的性质(如单调性等)、反表示、分离常数法等可求题设中的11个函数的值域.

1)函数的定义域为,当时,

,所以,故函数的值域为.

2)函数的定义域为,由可以得到

整理得到.

,,故函数的值域为.

3)函数的定义域为

所以函数的值域为.

4)函数的定义域为,令

时,,故,所以函数的值域为.

5)函数的定义域为

因为的增函数,上的减函数,

上的增函数,

时,函数的函数值1,故函数的值域为.

6)函数的定义域为,令,则

所以

因为,故,故函数的值域为.

7)函数的定义域为

,而

所以,故,故函数的值域为.

8)函数的定义域为

时,

时,

时,

综上,函数的值域为.

9)函数的定义域为

时,,故,所以

所以函数的值域为.

10)函数可变形为

,所以

故函数的值域为.

11)函数的定义域为,令

因为,故,故

故函数的值域为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.

(1)求直方图的的值;

(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由.

(3)估计居民月用水量的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(Ⅰ)求的值;

(Ⅱ)写出函数的单调递减区间(无需证明) ;

(Ⅲ)若实数满足,则称的二阶不动点,求函数的二阶不动点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查观众对某热播电视剧的喜爱程度,某电视台在甲、乙两地各随机抽取了8名观众作问卷调查,得分统计结果如图所示:

1)计算甲、乙两地被抽取的观众问卷的平均得分;

(2)计算甲、乙两地被抽取的观众问卷得分的方差;

(3)若从甲地被抽取的8名观众中再邀请2名进行深入调研,求这2名观众中恰有1人的问卷调查成绩在90分以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品(百台),其总成本为(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本),销售收入(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,完成下列问题:

1)写出利润函数的解析式(利润=销售收入-总成本);

2)甲厂生产多少台产品时,可使盈利最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求函数在点处的切线方程;

(2)当时,令函数,若函数在区间上有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=,x∈(-2,2).

(1) 判断f(x)的奇偶性并说明理由;

(2) 求证:函数f(x)在(-2,2)上是增函数;

(3) 若f(2+a)+f(1-2a)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间的一台机床生产出一批零件,现从中抽取8件,将其编为 ,…, ,测量其长度(单位: ),得到下表中数据:

编号

长度

1.49

1.46

1.51

1.51

1.53

1.51

1.47

1.51

其中长度在区间内的零件为一等品.

(1)从上述8个零件中,随机抽取一个,求这个零件为一等品的概率;

(2)从一等品零件中,随机抽取2个.

①用零件的编号列出所有可能的抽取结果;

②求这2个零件长度相等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年是中国改革开放40周年,改革开放40年来,从开启新时期到跨入新世纪,从站上新起点到进人新时代,我们党引领人民绘就了一幅波澜壮阔、气势恢宏的历史画卷,谱写了一曲感天动地、气壮山河的奋斗赞歌,40年来我们始终坚持保护环境和节约资源,坚持推进生态文明建设,郑州市政府也越来越重视生态系统的重建和维护,若市财政下拨一项专款100百万元,分别用于植绿护绿和处理污染两个生态维护项目,植绿护绿项目五年内带来的生态收益可表示为投放资金x(单位:百万元)的函数M(x(单位:百万元):,处理污染项目五年内带来的生态收益可表示为投放资金x(单位:百万元)的函数N(x)(单位:百万元):.

(Ⅰ)设分配给植绿护绿项目的资金为x(百万元),则两个生态项目五年内带来的收益总和为y,写出y关于x的函数解析式和定义域。

(Ⅱ)生态项目的投资开始利润薄弱,只有持之以恒,才能功在当代,利在千秋,试求出y的最大值,并求出此时对两个生态项目的投资分别为多少?

查看答案和解析>>

同步练习册答案