精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sinxcos(x+
π
3
)+
3
cos2x+
1
2
sin2x

(1)求函数f(x)的最小正周期;   
(2)求函数f(x)的最大值与最小值;
(3)写出函数f(x)的单调递增区间.
分析:先根据两角和的余弦函数公式及特殊角的三角函数值化简cos(x+
π
3
),合并后再利用两角和的正弦函数公式及特殊角的三角函数值把f(x)化为一个角的正弦函数,
(1)利用周期公式即可求出f(x)的最小正周期;
(2)根据正弦函数的值域即可求出f(x)的最大值和最小值;
(3)根据正弦函数的单调性即可求出f(x)的递增区间.
解答:解:f(x)=2sinxcos(x+
π
3
)+
3
cos2x+
1
2
sin2x

=2sinx(cosxcos
π
3
-sinxsin
π
3
)+
3
cos2x+
1
2
sin2x
=sinxcosx-
3
sin2x+
3
cos2x+
1
2
sin2x
=sin2x+
3
cos2x
=2sin(2x+
π
3
),
(1)因为T=
2
=π,所以f(x)的最小正周期为π;
(2)由-1≤sin(2x+
π
3
)≤1,得到-2≤f(x)≤2,
则函数f(x)的最大值为2,最小值为-2;
(3)令2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2

解得:kπ-
12
≤x≤kπ+
π
12

则f(x)的单调递增区间为:[kπ-
12
,kπ+
π
12
].
点评:此题考查了三角函数的恒等变换,三角函数的周期性及其求法,三角函数的最值,以及正弦函数的单调性.利用三角函数的恒等变换把f(x)化为一个角的正弦函数是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案