精英家教网 > 高中数学 > 题目详情
已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m,n∈R,m<0,
(1)求m与n的关系式;
(2)求f(x)的单调区间;
(3)若m<-4,求证:函数y=f(x)的图象与x轴只有一个交点.
分析:(1)由x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,求导,则f′(1)=0,求得m与n的关系表达式;
(2)根据(I),代入f(x)中,求导,令导数f′(x)>0,求得单调增区间,令f′(x)<0,求得单调减区间.
(3)先由f(1)=m+4,由题意得到函数f(x)的图象在x∈(1+
2
m
,+∞)
上和x轴没有交点,在x∈(-∞,1+
2
m
)
上单调递减,与x轴有一个交点,从而证得:若m<-4,函数y=f(x)的图象与x轴只有一个交点.
解答:解:(1)f′(x)=3mx2-6(m+1)x+n因为x=1是函数f(x)的一个极值点,所以f′(1)=0,即3m-6(m+1)+n=0,所以n=3m+6
(2)由(I)知,f′(x)=3mx2-6(m+1)x+3m+6=3m(x-1)[x-(1+
2
m
)]

当m<0时,有1>1+
2
m
,当x变化时,f(x)与f′(x)的变化如下表:
x (-∞,1+
2
m
)
1+
2
m
(1+
2
m
,1)
1 (1,+∞)
f′(x) <0 0 >0 0 <0
f(x) 单调递减 极小值 单调递增 极大值 单调递减
故有上表知,当m<0时,f(x)在(-∞,1+
2
m
)
单调递减,在(1+
2
m
,1)
单调递增,在(1,+∞)上单调递减.
(3)证明:f(1)=m+4,当x<-4时,f(1)<0,
则函数f(x)的图象在x∈(1+
2
m
,+∞)
上和x轴没有交点,在x∈(-∞,1+
2
m
)
上单调递减,
与x轴有一个交点,综上所述,若m<-4,函数y=f(x)的图象与x轴只有一个交点.
点评:考查利用导数研究函数的单调区间和极值问题,求函数的单调区间实质是解不等式,导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m,n∈R,m<0.
(Ⅰ)求m与n的关系表达式;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当x∈[-1,1]时,函数y=f(x)的图象上任意一点的切线斜率恒大于3m,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

22、已知x=1是函数f(x)=x3-nx2+3(m+1)x+n+1(m、n∈R,m≠0)的一个极值点.
(1)求m与n的关系表达式;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

18、已知x=1是函数f(x)=x3-ax(a为参数)的一个极值点.
(1)求a的值;
(2)求x∈[0,2]时,函数f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m,n∈R,m≠0
(1)求m与n的关系式;
(2)求f(x)的单调区间;
(3)设函数函数g(x)=
1
e
x2gex-
1
3
x3-x2,φ(x)=
2
3
x3-x2;试比较g(x)与φ(x)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x=1是函数f(x)=x3-ax(a为参数)的一个极值点.
(Ⅰ)求f(x)的解析式;
(Ⅱ)当x∈[0,2]时,求函数f(x)的最大值与最小值.

查看答案和解析>>

同步练习册答案