【题目】已知命题α:函数的定义域是R;命题β:在R上定义运算:xy=x(1-y).不等式(x-a)(x+a)<1对任意实数x都成立.
(1)若α、β中有且只有一个真命题,求实数a的取值范围;
(2)若α、β中至少有一个真命题,求实数a的取值范围;
(3)若α、β中至多有一个真命题,求实数a的取值范围.
【答案】(1) (,0)∪[,4);(2) (,4);(3) (∞,0)∪[,+∞)
【解析】
分别求出命题α为真时和命题β为真时a的取值范围,再求:(1)若α为真、β为假时和α为假、β为真时对应a的取值范围,求并集即可;(2)求出α为假且β为假时a的取值范围,再求补集即可;(3)求出α为真且β为真时a的取值范围,再求补集即可.
函数的定义域是R,则ax2ax+1>0恒成立,
a=0时,满足条件;
a≠0时,则,解得0<a<4;
所以命题α为真命题时,a∈[0,4);
又在R上定义运算:xy=x(1y),
不等式(xa)(x+a)<1可化为(xa)(1xa)<1,
即x2xa2+a+1>0对任意的x∈R都成立;
令△=14(a2+a+1)<0,
解得<a<,
所以命题β为真时a的取值范围是a∈(,).
(1)若α为真、β为假时,有,即≤a<4;
若α为假、β为真时,有,即<a<0;
综上,实数a的取值范围是(,0)∪[,4);
(2)若α为假且β为假时,有,即a≤或a≥4;
所以α、β中至少有一个真命题时,实数a的取值范围是(,4);
(3)若α为真且β为真时,有,即0≤a<;
所以α、β中至多有一个真命题时,实数a的取值范围是(∞,0)∪[,+∞).
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.
(1)写出直线的普通方程及曲线的直角坐标方程;
(2)已知点,点,直线过点且与曲线相交于,两点,设线段的中点为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线与曲线恰有两个不同的交点,记的所有可能取值构成集合,是椭圆上一动点,点与点关于直线对称,记的所有可能取值构成集合,若随机从集合中分别抽出一个元素,则的概率是___.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数同时满足:(1)对于定义域上的任意,恒有;(2)对于定义域上的任意,,当时,恒有,则称函数为“理想函数”.给出下列四个函数中:①; ②; ③;④,则被称为“理想数”的有________(填相应的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知几何体,其中四边形为直角梯形,四边形为矩形, ,且, .
(1)试判断线段上是否存在一点,使得平面,请说明理由;
(2)若,求该几何体的表面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为1的正方体中,点是对角线上的动点(点与不重合),则下列结论正确的是____.
①存在点,使得平面平面;
②存在点,使得平面;
③的面积不可能等于;
④若分别是在平面与平面的正投影的面积,则存在点,使得.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com