精英家教网 > 高中数学 > 题目详情
写出“若x≠3且x≠2,则x2-5x+6≠0”的否命题:
若x=3或x=2则x2-5x+6=0
若x=3或x=2则x2-5x+6=0
分析:根据四种命题的定义,“若p,则q”的否命题为“若非p,则非q”,结合原命题为“若x≠3且x≠2,则x2-5x+6≠0”,结合否命题的定义,即可得到答案.
解答:解:“若x≠3且x≠2,则x2-5x+6≠0”的否命题就将条件和结论同时否定,则否命题是“若x=3或x=2则x2-5x+6=0”
故答案为:若x=3或x=2则x2-5x+6=0
点评:本题考查的知识点是四种命题,其中熟练掌握四种命题的定义,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=a2x-
1
2
x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则
a+b
2
ab
(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

写出命题x≥2y≥3,则xy≥5”的逆命题、否命题,逆否命题.并判断其真假.

 

查看答案和解析>>

科目:高中数学 来源:松江区模拟 题型:解答题

已知f(x)=a2x-
1
2
x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则
a+b
2
ab
(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.

查看答案和解析>>

科目:高中数学 来源:2006年上海市八校高三联考数学试卷(松江二中、青浦、七宝、育才、市二、行知、位育)(解析版) 题型:解答题

已知f(x)=a2x-x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.

查看答案和解析>>

科目:高中数学 来源:2010年高考数学新题型解析选编(4)(解析版) 题型:解答题

已知f(x)=a2x-x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.

查看答案和解析>>

同步练习册答案