精英家教网 > 高中数学 > 题目详情
已知一个圆的圆心为坐标原点,半径为2.从这个圆上任意一点P向x轴作垂线段PP′,求线段PP′中点M的轨迹.
由题意可得已知圆的方程为x2+y2=4.
设点M的坐标为(x,y),点P的坐标为(x0,y0),
∵M是线段PP′的中点,
∴由中点坐标公式得x=x0y=
y0
2

即x0=x,y0=2y.
∵P(x0,y0)在圆x2+y2=4上,
x02+y02=4
将x0=x,y0=2y代入方程①得
x2+4y2=4,即
x2
4
+y2=1

∴点M的轨迹是一个椭圆.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设过点P(x,y)的直线分别与x轴和y轴交于A,B两点,点Q与点P关于y轴对称,O为坐标原点,若
BP
=3
PA
OQ
AB
=4

(1)求点P的轨迹M的方程;
(2)过F(2,0)的直线与轨迹M交于A,B两点,求
FA
FB
的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一动圆与已知圆O1(x+2)2+y2=1外切,与圆O2(x-2)2+y2=49内切,
(1)求动圆圆心的轨迹方程C;
(2)已知点A(2,3),O(0,0)是否存在平行于OA的直线l与曲线C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,DP⊥x轴,点M在DP的延长线上,且
|DM|
|DP|
=
3
2
,当点P在圆x2+y2=4上运动时,求:动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在同一直角坐标系中,经过伸缩变换
x′=5x
y′=3y
后,曲线C变为曲线x′2+y′2=1,则曲线C的方程为(  )
A.25x2+9y2=1B.9x2+25y2=1C.25x+9y=1D.
x2
25
+
y2
9
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知m∈R,则动圆x2+y2+4mx-2my+6m2-4=0的圆心的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线
x2
2
-y2=1
的左、右顶点分别为A1,A2,点P(x1,y1),Q(x1,-y1)是双曲线上不同的两个动点.
(1)求直线A1P与A2Q交点的轨迹E的方程;
(2)若过点H(0,h)(h>1)的两条直线l1和l2与轨迹E都只有一个交点,且l1⊥l2,求h的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

点M与点F(3,0)的距离比它到直线x+1=0的距离多2,则点M的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1、F2是椭圆+=1的两焦点,经点F2的的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1|等于(   )
A.11        B.10        C.9       D.8

查看答案和解析>>

同步练习册答案