精英家教网 > 高中数学 > 题目详情
设函数f(x)=
-1,-2≤x≤0
x-1,0<x≤2
,若函数g(x)=f(x)-ax,x∈[-2,2]为偶函数,则实数a的值为______.
∵f(x)=
-1,-2≤x≤0
x-1,0<x≤2

∴g(x)=f(x)-ax=
-ax-1,-2≤x≤0
(1-a)x-1,0<x≤2

∵g(x)=
-ax-1,-2≤x≤0
(1-a)x-1,0<x≤2
为偶函数,
∴g(-1)=g(1),即a-1=1-a-1=-a,
∴2a=1,
∴a=
1
2

故答案为:
1
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=|1-
1x
|(x>0),证明:当0<a<b,且f(a)=f(b)时,ab>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1-
1-x
x
(x<0)
a+x2(x≥0)
,要使f(x)在(-∞,+∞)内连续,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1             (x≤
3
)
4-x2
(
3
<x<2)
0              (x≥2)
,则
2010
-1
f(x)dx的值为
π
3
+
2+
3
2
π
3
+
2+
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1-|x-1|,x<2
1
2
f(x-2),x≥2
,则函数F(x)=xf(x)-1的零点的个数为
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1,x>0
0,x=0
-1,x<0
,g(x)=x2f(x-1),则函数g(x)的递减区间是(  )

查看答案和解析>>

同步练习册答案