已知动圆C经过点(0,m) (m>0),且与直线y=-m相切,圆C被x轴截得弦长的最小值为1,记该圆的圆心的轨迹为E.
(Ⅰ)求曲线E的方程;
(Ⅱ)是否存在曲线C与曲线E的一个公共点,使它们在该点处有相同的切线?若存在,求出切线方程;若不存在,说明理由.
(Ⅰ)x2=2y;(Ⅱ)存在题设的公共点B,其坐标为(±2,4),公切线方程为y=2(x-2)+4或y=-2 (x+2)+4,即y=±2x-4.
解析试题分析:(Ⅰ)根据定义法确定轨迹为抛物线,然后借助圆C被x轴截得弦长的最小值为1求解参数m的值;(Ⅱ)假设存在题设的公共点B(b, b2).利用圆的切线性质,以及利用导数的几何意义求解抛物线的切线方程的斜率建立等量关系,求解b的值进行论证.
试题解析:(Ⅰ)依题意,曲线E是以(0,m)为焦点,以y=-m为准线的抛物线.
曲线E的方程为x2=4my. 2分
设动圆圆心为A(a,),则圆C方程为(x-a)2+(y-)2=(+m)2,
令y=0,得(x-a)2=+m2.
当a=0时,圆C被x轴截得弦长取得最小值2m,于是m=,
故曲线E的方程为x2=2y. 5分
(Ⅱ)假设存在题设的公共点B(b, b2).
圆C方程为(x-a)2+(y-a2)2=(a2+)2,
将点B坐标代入上式,并整理,得(b-a)2[1+ (a+b)2]= (a2+1)2.① 7分
对y=x2求导,得y¢=x,则曲线E在点B处的切线斜率为b.
又直线AB的斜率k== (a+b).
由圆切线的性质,有 (a+b)b=-1. ② 8分
由①和②得b2(b2-8)=0.
显然b≠0,则b=±2. 9分
所以存在题设的公共点B,其坐标为(±2,4),公切线方程为
y=2 (x-2)+4或y=-2 (x+2)+4,即y=±2x-4. 12分
考点:1.轨迹方程;2.圆的的切线和抛物线的切线.
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为,右焦点为,直线过点,且垂直于椭圆的长轴,动直线垂直于,垂足为点,线段的垂直平分线交于点,求点的轨迹的方程;
(3)设与轴交于点,不同的两点在上(与也不重合),且满足,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
知椭圆的左右焦点为F1,F2,离心率为,以线段F1 F2为直径的圆的面积为, (1)求椭圆的方程;(2) 设直线l过椭圆的右焦点F2(l不垂直坐标轴),且与椭圆交于A、B两点,线段AB的垂直平分线交x轴于点M(m,0),试求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点,
(Ⅰ)设直线的斜率分别为,求证:为定值;
(Ⅱ)求线段的长的最小值;
(Ⅲ)当点运动时,以为直径的圆是否经过某定点?请证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
极坐标系中椭圆C的方程为
以极点为原点,极轴为轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.
(Ⅰ)求该椭圆的直角标方程;若椭圆上任一点坐标为,求的取值范围;
(Ⅱ)若椭圆的两条弦交于点,且直线与的倾斜角互补,
求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点为,点是抛物线上的一点,且其纵坐标为4,.
(Ⅰ)求抛物线的方程;
(Ⅱ) 设点是抛物线上的两点,的角平分线与轴垂直,求的面积最大时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:的左、右焦点分别为F1、F2,上顶点为A,△AF1F2为正三角形,且以线段F1F2为直径的圆与直线相切.
(Ⅰ)求椭圆C的方程和离心率e;
(Ⅱ)若点P为焦点F1关于直线的对称点,动点M满足. 问是否存在一个定点T,使得动点M到定点T的距离为定值?若存在,求出定点T的坐标及此定值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com