精英家教网 > 高中数学 > 题目详情
14.已知曲线$y=\frac{1}{x}$.
(1)求满足斜率为$-\frac{1}{3}$的曲线的切线方程;
(2)求曲线过点P(1,0)的切线方程.

分析 (1)求导数,利用斜率为$-\frac{1}{3}$,求出切点坐标,即可求满足斜率为$-\frac{1}{3}$的曲线的切线方程;
(2)设过该点的切线切点为$B(b,\frac{1}{b})$,求导数,即可求曲线过点P(1,0)的切线方程.

解答 解:(1)设切点为$A(a,\frac{1}{a})$,
则切线斜率为$k=y'{|_{c=a}}=-\frac{1}{a^2}$,…(1分)
所以$-\frac{1}{a^2}=-\frac{1}{3}$,解得$a=±\sqrt{3}$,…(2分)
所以,切点坐标为$(\sqrt{3},\frac{{\sqrt{3}}}{3})$或$(-\sqrt{3},-\frac{{\sqrt{3}}}{3})$,…(3分)
于是,切线方程为$y-\frac{{\sqrt{3}}}{3}=-\frac{1}{3}(x-\sqrt{3})$或$y+\frac{{\sqrt{3}}}{3}=-\frac{1}{3}(x+\sqrt{3})$,
整理得,$x+3y-2\sqrt{3}=0$或$x+3y+2\sqrt{3}=0$.…(5分)
(2)显然点P(1,0)不在曲线$y=\frac{1}{x}$上,…(6分)
则可设过该点的切线切点为$B(b,\frac{1}{b})$,
而斜率$k=y'{|_{k=b}}=-\frac{1}{b^2}$,…(7分)
于是,切线方程为$y-\frac{1}{b}=-\frac{1}{b^2}(x-b)$,①…(8分)
将P(1,0)坐标代入方程①得$-\frac{1}{b}=-\frac{1}{b^2}(1-b)$,解得$b=\frac{1}{2}$,…(9分)
把$b=\frac{1}{2}$代入方程①,并整理得切线方程为4x+y-4=0.…(10分)

点评 本题考查导数几何意义的运用,考查学生的计算能力,正确求导是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知A、B是函数y=f(x),x∈[a,b]图象的两个端点,M(x,y)是f(x)上任意一点,过M(x,y)作MN⊥x轴交直线AB于N,若不等式|MN|≤k恒成立,则称函数f(x)在[a,b]上“k阶线性近似”.
(1)若f(x)=x+$\frac{1}{x}$,x∈[$\frac{1}{2}$,2],证明:f(x)在[$\frac{1}{2}$,2]上“$\frac{1}{2}$阶线性近似”;
(2)若f(x)=x2在[-1,2]上“k阶线性近似”,求实数k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A、B、C所对的边分别为a、b、c,角A、B、C的度数成等差数列,$b=\sqrt{13}$.
(1)若3sinC=4sinA,求c的值;
(2)求a+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.焦点在x轴上,长、短半轴长之和为10,焦距为$4\sqrt{5}$,则椭圆的标准方程为(  )
A.$\frac{x^2}{6}+\frac{y^2}{4}=1$B.$\frac{x^2}{16}+\frac{y^2}{36}=1$C.$\frac{x^2}{36}+\frac{y^2}{16}=1$D.$\frac{x^2}{49}+\frac{y^2}{9}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知∠A1B1C1=90°,AA1=4,BB1=2,CC1=3,A1B1=B1C1=1.
(1)设点O是AB的中点,证明:OC∥平面A1B1C1
(2)求二面角B-AC-A1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知loga2,logb2∈R,则“2a>2b>2”是“loga2<logb2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四边形ABCD是正方形,PA⊥平面ABCD,EB∥PA,AB=PA=4,EB=2,F为PD的中点.
(1)求证:AF⊥PC;
(2)求证:BD∥平面PEC;
(3)求锐角二面角D-PC-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知两条不同直线m、l,两个不同平面α、β,下列命题正确的是(  )
A.若l∥α,则l平行于α内的所有直线B.若m?α,l?β且l⊥m,则α⊥β
C.若l?β,l⊥α,则α⊥βD.若m?α,l?β且α∥β,则m∥l

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=alog2x-blog3x+2,若f($\frac{1}{2015}$)=4,则f(2015)=0.

查看答案和解析>>

同步练习册答案