精英家教网 > 高中数学 > 题目详情

如图,在△中,,点上,.沿将△翻折成△,使平面平面;沿将△翻折成△,使平面平面

(Ⅰ)求证:平面
(Ⅱ)设,当为何值时,二面角的大小为

(1)要证明线面平行,则可以根据来得到证明。
(2)

解析试题分析:解:(Ⅰ)因为平面,所以平面.    …2分
因为平面平面,且,所以平面
同理,平面,所以,从而平面.  …4分
所以平面平面,从而平面.               …6分
(Ⅱ)以C为原点,所在直线为轴,所在直线为轴,过C且垂直于平面的直线为轴,建立空间直角坐标系,如图.                     …7分






平面的一个法向量,                           …9分
平面的一个法向量.                              …11分
,                        …13分
化简得,解得.                 …15分
考点:线面平行和二面角的求解
点评:解决的关键是利用空间向量法来得到空间中的二面角的表示,以及结合判定定理得到线面的垂直的证明。属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4, BD=,AB=2CD=8.

(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面为一直角梯形,其中底面的中点.

(Ⅰ)求证://平面
(Ⅱ)若平面,求平面与平面夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四边形ABCD为平行四边形,BC⊥平面ABEAEBEBE = BC = 1,AE = M为线段AB的中点,N为线段DE的中点,P为线段AE的中点。

(1)求证:MNEA
(2)求四棱锥MADNP的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥中,平面ABCD,底面ABCD是菱形,.

(1)求证:平面PAC
(2)若,求PBAC所成角的余弦值;
(3)若PA=,求证:平面PBC⊥平面PDC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,且AB=AD,BC=DC.

(1)求证:平面EFGH;
(2)求证:四边形EFGH是矩形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,边长为4的正方形与正三角形所在的平面相互垂直,且
分别为中点.

(1)求证:
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知一四棱锥P-ABCD的三视图如下,E是侧棱PC上的动点。

(Ⅰ)求四棱锥P-ABCD的体积;
(Ⅱ)当点E在何位置时,BD⊥AE?证明你的结论;
(Ⅲ)若点E为PC的中点,求二面角D-AE-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图:直三棱柱ABC中,,D为AB中点。

(1)求证:
(2)求证:∥平面
(3)求C1到平面A1CD的距离。

查看答案和解析>>

同步练习册答案