精英家教网 > 高中数学 > 题目详情
20.已知命题p:?x∈[0,3],a≥-x2+2x-$\frac{2}{3}$,命题q:?x∈R,x2+4x+a=0,若命题“p∧q”是真命题,则实数a的范围为[$\frac{1}{3}$,4].

分析 结合二次函数的性质分别求出关于命题p,q的a的范围,从而求出a的范围.

解答 解:设f(x)=-x2+2x-$\frac{2}{3}$,(0≤x≤3),
则f(x)=-(x-1)2+$\frac{1}{3}$,
又0≤x≤3,∴当x=1时,f(x)max=f(1)=$\frac{1}{3}$,
由已知得:命题P:a≥$\frac{1}{3}$,
由命题q:△=16-4a≥0,即a≤4,
又命题“p∧q”是真命题,
∴a≥$\frac{1}{3}$且a≤4成立,即$\frac{1}{3}$≤a≤4,
故答案为:[$\frac{1}{3}$,4].

点评 本题考查了复合命题的判断,考查二次函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知圆C的圆心在直线x-2y-3=0上,并且经过A(2,-3)和B(-2,-5),求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.方程sin2x+sin x-1-m=0在实数集上有解,则实数m的范围为(  )
A.$[-\frac{5}{4},+∞)$B.$[-\frac{5}{4},1]$C.$(-∞,-\frac{5}{4}]$D.[-1,$\frac{5}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设P(x,y)是曲线$\sqrt{\frac{{x}^{2}}{25}}$+$\sqrt{\frac{{y}^{2}}{16}}$=1上的点,F1(-3,0),F2(3,0),则必有(  )
A.|PF1|+|PF2|≤10B.|PF1|+|PF2|<10C.|PF1|+|PF2|≥10D.|PF1|+|PF2|>10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列结论中正确的是(  )
A.各个面都是三角形的几何体是三棱锥
B.以三角形的一边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥
C.当正棱锥的侧棱长与底面多边形的边长相等时该棱锥可能是六棱锥
D.圆锥的顶点与底面圆周上的任一点的连线都是母线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设点O为△ABC的内部,点D,E分别为边AC,BC的中点,且$|{3\overrightarrow{OD}+2\overrightarrow{DE}}|=3$,则$|{\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}}|$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,内角A,B,C所对的边分别为a,b,c,且2$\sqrt{3}$cos2$\frac{C}{2}$=sinC+$\sqrt{3}$+1.
(1)求角C的大小;
(2)若a=2$\sqrt{3}$,c=2,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.椭圆$\frac{x^2}{4}+{y^2}=1$两个焦点分别是F1,F2,点P是椭圆上任意一点,则$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的取值范围是[-2,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.化简求值:(lg5)2+lg2•lg5+lg20-$\root{4}{{{{(-4)}^2}}}•\root{6}{125}+{2^{(1+\frac{1}{2}{{log}_2}5)}}$.

查看答案和解析>>

同步练习册答案