分析 结合二次函数的性质分别求出关于命题p,q的a的范围,从而求出a的范围.
解答 解:设f(x)=-x2+2x-$\frac{2}{3}$,(0≤x≤3),
则f(x)=-(x-1)2+$\frac{1}{3}$,
又0≤x≤3,∴当x=1时,f(x)max=f(1)=$\frac{1}{3}$,
由已知得:命题P:a≥$\frac{1}{3}$,
由命题q:△=16-4a≥0,即a≤4,
又命题“p∧q”是真命题,
∴a≥$\frac{1}{3}$且a≤4成立,即$\frac{1}{3}$≤a≤4,
故答案为:[$\frac{1}{3}$,4].
点评 本题考查了复合命题的判断,考查二次函数的性质,是一道基础题.
科目:高中数学 来源: 题型:选择题
A. | $[-\frac{5}{4},+∞)$ | B. | $[-\frac{5}{4},1]$ | C. | $(-∞,-\frac{5}{4}]$ | D. | [-1,$\frac{5}{4}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | |PF1|+|PF2|≤10 | B. | |PF1|+|PF2|<10 | C. | |PF1|+|PF2|≥10 | D. | |PF1|+|PF2|>10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 各个面都是三角形的几何体是三棱锥 | |
B. | 以三角形的一边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥 | |
C. | 当正棱锥的侧棱长与底面多边形的边长相等时该棱锥可能是六棱锥 | |
D. | 圆锥的顶点与底面圆周上的任一点的连线都是母线 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com