精英家教网 > 高中数学 > 题目详情

【题目】已知圆C1:x2+y2﹣3x﹣3y+3=0,圆C2:x2+y2﹣2x﹣2y=0,求两圆的公共弦所在的直线方程及弦长.

【答案】解:把圆C1:x2+y2﹣3x﹣3y+3=0和圆C2:x2+y2﹣2x﹣2y=0的方程相减,
可得两圆的公共弦所在的直线方程为 x+y﹣3=0.
由于圆C2:x2+y2﹣2x﹣2y=0,即 圆C2:(x﹣1)2+(y﹣1)2=2,
故C2(1,1),半径r2= ,求得点C2到公共弦所在的直线的距离d= =
故公共弦的长为 2 =2 =
【解析】把两个圆的方程相减求得公共弦所在的直线方程.利用点到直线的距离公式求出圆心C2到公共弦所在的直线的距离d,再根据圆的半径r2 , 利用弦长公式求得公共弦长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个盒子里装有标号为1,2,3,…,5的5张标签,现随机地从盒子里无放回地抽取两张标签.记X为两张标签上的数字之和.
(1)求X的分布列.
(2)求X的期望E(X)和方差D(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(示意),公路AMAN围成的是一块顶角为α的角形耕地,其中tanα=-2.在该块土地中P处有一小型建筑,经测量,它到公路AMAN的距离分别为3kmkm.现要过点P修建一条直线公路BC,将三条公路围成的区域ABC建成一个工业园.为尽量减少耕地占用,问如何确定B点的位置,使得该工业园区的面积最小?并求最小面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|≤ )的图象与坐标轴的三个交点为P,Q,R,且P(1,0),Q(m,0)(m>0),∠PQR= ,M为QR的中点,|PM|=

(1)求m的值及f(x)的解析式;
(2)设∠PRQ=θ,求tanθ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCD﹣A1B1C1D1中,E、F分别是AA1、AB的中点,则EF与对角面A1C1CA所成角的度数是(
A.30°
B.45°
C.60°
D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱中,点 分别是棱 上的点,且

(Ⅰ)证明:平面平面

(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1和双曲线C2焦点相同,且离心率互为倒数,F1 , F2它们的公共焦点,P是椭圆和双曲线在第一象限的交点,当∠F1PF2=60°时,则椭圆C1的离心率为(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线在直角坐标系中的参数方程为为参数, 为倾斜角),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,在极坐标系中,曲线的方程为.

(1)写出曲线的直角坐标方程;

(2)点,若直线与曲线交于两点,求使为定值的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,曲线的参数方程为为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为.

(1)求曲线的普通方程和直线的倾斜角;

(2)设点,直线和曲线交于 两点,求.

查看答案和解析>>

同步练习册答案