精英家教网 > 高中数学 > 题目详情
已知函数f(x)=3sin(2x-
π
3
),g(x)=4sin(2x+
π
3
)
,则函数y=f(x)+g(x)的最大值为
13
13
分析:利用两角和差的正弦、余弦公式化简函数y为
13
sin(2x+∅),可得函数y的最大值为
13
解答:解:函数y=f(x)+g(x)=3sin2xcos
π
3
-3cos2xsin
π
3
+4sin2xcos
π
3
+4cos2xsin
π
3
 
=7sin2xcos
π
3
+cos2xsin
π
3
=
7
2
sin2x+
3
2
cos2x
=
52
2
sin(2x+∅)=
13
sin(2x+∅),
其中cos∅=
7
52
,sin∅=
3
52
,故函数y的最大值为
13

故答案为:
13
点评:本题主要考查两角和差的正弦、余弦公式的应用,正弦函数的值域,利用了asinx+bcosx = 
a2+b2
sin(x+∅)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}(  )
A、是等比数列B、是等差数列C、从第2项起是等比数列D、是常数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有满足条件的m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x|x<a}.
(1)若A⊆B,求实数a的取值范围;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
a-1
(a≠1)在区间(0,4]上是增函数,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2log2x,g(x)=log2x.
(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]•g(x)的值域;
(2)如果对任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案