精英家教网 > 高中数学 > 题目详情

已知等差数列的首项,公差,且分别是正数等比数列项.
(1)求数列的通项公式;
(2)设数列对任意均有成立,设的前项和为,求.

(1);(2).

解析试题分析:本题考查等差数列与等比数列的通项公式、前项和公式等基础知识,考查思维能力、分析问题与解决问题的能力.第一问,先用等差数列的通项公式将展开,因为成等比,利用等比中项列等式求出,直接写出的通项公式,通过求出来的得出,写出数列的通项公式;第二问,用代替已知等式中的,得到新的等式,2个等式相减,把第一问的两个通项公式代入得到的通项公式,注意的检验,最后利用等比数列的求和公式求和.
试题解析:(1) ∵成等比数列
,整理得,因为公差,所以      3分
                           4分

                          6分
(2)         ①
时,   ②
②得:                        8分
,又
                        10分

                      12分.
考点:1.等差数列与等比数列的通项公式;2.等比数列的前项和公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

各项均为正数的数列中,是数列的前项和,对任意,有

(1)求数列的通项公式;
(2)记,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N*,数列{bn}满足an=4log2bn+3,n∈N*.
(1)求an,bn;
(2)求数列{an·bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为满足.
(Ⅰ)函数与函数互为反函数,令,求数列的前项和
(Ⅱ)已知数列满足,证明:对任意的整数,有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,,且当时,.记的阶乘.
(1)求数列的通项公式;
(2)求证:数列为等差数列;
(3)若,求的前 项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的通项,其前n项和为
(1)求
(2)求数列{}的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前项和为,且的等差中项,等差数列满足.
(1)求数列的通项公式;
(2)设,数列的前项和为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足
(1)求数列的通项公式;
(2)求数列的前项和,并求当最大时序号的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设数列的前项和为,若,则通项           .

查看答案和解析>>

同步练习册答案