精英家教网 > 高中数学 > 题目详情

【题目】随着“互联网+交通”模式的迅猛发展,“共享助力单车”在很多城市相继出现.某“共享助力单车”运营公司为了解某地区用户对该公司所提供的服务的满意度,随机调查了100名用户,得到用户的满意度评分(满分10分),现将评分分为5组,如下表:

组别

满意度评分

[0,2)

[2,4)

[4,6)

[6,8)

[8,10]

频数

5

10

a

32

16

频率

0.05

b

0.37

c

0.16

(1)求表格中的a,b,c的值;

(2)估计用户的满意度评分的平均数;

(3)若从这100名用户中随机抽取25人,估计满意度评分低于6分的人数为多少?

【答案】(1);(2) 5.88;(3) 13.

【解析】

1)由频数分布表,即可求解表格中的的值;

2)由频数分布表,即可估计用户的满意度平分的平均数;

3)从这100名用户中随机抽取25人,由频数分布表能估计满意度平分低于6分的人数。

(1)由频数分布表得,解得

(2)估计用户的满意度评分的平均数为:

.

(3)从这100名用户中随机抽取25人,估计满足一度评分低于6分的人数为:

人.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数为偶函数,求实数的值;

2)若,求函数的单调递减区间;

3)当时,若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知椭圆的上下两个焦点分别为,且,椭圆过点

(1)求椭圆的标准方程;

(2)设椭圆的一个顶点为,直线交椭圆于另一个点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于区间,若函数同时满足:①上是单调函数;②函数的值域是,则称区间为函数保值区间.1)写出函数的一个保值区间为_____________;(2)若函数存在保值区间,则实数的取值范围为_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为实数,用表示不超过的最大整数.

1)若函数,求的值;

2)若函数,求的值域;

3)若存在,使得,则称函数函数,若函数 函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且时,总有成立.

a的值;

判断并证明函数的单调性;

上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点 在椭圆上,且椭圆的离心率为.

(1)求椭圆的标准方程;

(2)记椭圆的左、右顶点分别为,点轴上任意一点(异于点),过点的直线与椭圆相交于两点.

①若点的坐标为,直线的斜率为,求的面积;

②若点的坐标为,连结交于点,记直线的斜率分别为,证明:是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中),且曲线在点处的切线垂直于直线.

(1)求的值及此时的切线方程;

(2)求函数的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别为内角所对的边且满足,

(I)求C的大小;

(II)现给出三个条件:①;②;③.试从中选择两个可以确定的条件写出你的选择并以此为依据求的面积S.(只写出一种情况即可)

查看答案和解析>>

同步练习册答案