【题目】随着“互联网+交通”模式的迅猛发展,“共享助力单车”在很多城市相继出现.某“共享助力单车”运营公司为了解某地区用户对该公司所提供的服务的满意度,随机调查了100名用户,得到用户的满意度评分(满分10分),现将评分分为5组,如下表:
组别 | 一 | 二 | 三 | 四 | 五 |
满意度评分 | [0,2) | [2,4) | [4,6) | [6,8) | [8,10] |
频数 | 5 | 10 | a | 32 | 16 |
频率 | 0.05 | b | 0.37 | c | 0.16 |
(1)求表格中的a,b,c的值;
(2)估计用户的满意度评分的平均数;
(3)若从这100名用户中随机抽取25人,估计满意度评分低于6分的人数为多少?
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知椭圆的上下两个焦点分别为,且,椭圆过点.
(1)求椭圆的标准方程;
(2)设椭圆的一个顶点为,直线交椭圆于另一个点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于区间,若函数同时满足:①在上是单调函数;②函数的值域是,则称区间为函数的“保值”区间.(1)写出函数的一个“保值”区间为_____________;(2)若函数存在“保值”区间,则实数的取值范围为_____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为实数,用表示不超过的最大整数.
(1)若函数,求的值;
(2)若函数,求的值域;
(3)若存在且,使得,则称函数是函数,若函数 是函数,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点 在椭圆:上,且椭圆的离心率为.
(1)求椭圆的标准方程;
(2)记椭圆的左、右顶点分别为、,点是轴上任意一点(异于点),过点的直线与椭圆相交于两点.
①若点的坐标为,直线的斜率为,求的面积;
②若点的坐标为,连结交于点,记直线的斜率分别为,证明:是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中,分别为内角所对的边,且满足,
(I)求C的大小;
(II)现给出三个条件:①;②;③.试从中选择两个可以确定的条件,写出你的选择并以此为依据求的面积S.(只写出一种情况即可)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com