精英家教网 > 高中数学 > 题目详情
用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是(  )
A、(1+a+a2+a3+a4+a5)(1+b5)(1+c)5
B、(1+a5)(1+b+b2+b3+b4+b5)(1+c)5
C、(1+a)5(1+b+b2+b3+b4+b5)(1+c5
D、(1+a5)(1+b)5(1+c+c2+c3+c4+c5
考点:归纳推理,进行简单的合情推理
专题:推理和证明
分析:根据“1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来”,分别取红球蓝球黑球,根据分步计数原理,分三步,每一步取一种球,问题得以解决.
解答:解:所有的蓝球都取出或都不取出的所有取法中,与取红球的个数和黑球的个数无关,而红球篮球是无区别,黑球是有区别的,
根据分布计数原理,第一步取红球,红球的取法有(1+a+a2+a3+a4+a5),
第二步取蓝球,有(1+b5),
第三步取黑球,有(1+c)5
所以所有的蓝球都取出或都不取出的所有取法有(1+a+a2+a3+a4+a5)(1+b5)(1+c)5
故选:A.
点评:本题主要考查了分步计数原理和归纳推理,合理的利用题目中所给的实例,要遵循其规律,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知变量x与y正相关,且由观测数据算得样本平均数
.
x
=3,
.
y
=3.5,则由该观测数据算得的线性回归方程可能是(  )
A、
y
=0.4x+2.3
B、
y
=2x-2.4
C、
y
=-2x+9.5
D、
y
=-0.3x+4.4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1的左、右焦点分别是M、N.正三角形AMN的一边AN与双曲线右支交于点B,且
AN
=4
BN
,则双曲线C的离心率为(  )
A、
3
2
+1
B、
13
+1
3
C、
13
3
+1
D、
3
+1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设公比q=
1
2
的等比数列{an}的前n项和为Sn,则
S4
a3
=(  )
A、
15
2
B、
15
4
C、
7
2
D、
7
4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax(0<a<1)在区间[0,2]上的最大值比最小值大
3
4
,则a的值为(  )
A、
1
2
B、
7
2
C、
2
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x的准线过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点,且准线与椭圆交于A、B两点,O为坐标原点,△AOB的面积为
3
2
,则椭圆的离心率为(  )
A、
2
3
B、
1
2
C、
1
3
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

推理“①三角函数都是周期函数;②正切函数是三角函数;③正切函数是周期函数”中的小前提是(  )
A、①B、②C、③D、①和②

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=log37,b=23.3,c=0.81.1,则(  )
A、b<a<c
B、c<a<b
C、c<b<a
D、a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,
BE
BC
DF
DC
,若
AE
AF
=1,
CE
CF
=-
2
3
,则λ+μ=(  )
A、
1
2
B、
2
3
C、
5
6
D、
7
12

查看答案和解析>>

同步练习册答案