精英家教网 > 高中数学 > 题目详情

已知函数
(1)若在[-3,2]上具有单调性,求实数的取值范围。
(2)若有最小值为-12,求实数的值;

(1);(2)

解析试题分析:(1)二次函数的单调性与对称轴有关,单调区间在对称轴的一侧,可数形结合解题; 图像开口上, 对称轴为,区间在对称轴左侧为单调减函数, 区间在对称轴右侧为单调增函数,
(2)二次函数在区间上的最值在端点处或顶点处,遇到对称轴或区间含有待定的字母,则要按对称轴在不在区间内以及区间中点进行讨论. 图像开口上,当对称轴为在区间内时,最小值位于对称轴处; 当区间在对称轴左侧为单调减函数,最小值位于右端点处.
试题解析:
(1)的对称轴为
上具有单调性
所以

(2) 由有最小值为
Ⅰ.当
解得:
Ⅱ.当
解得: (舍)
综上所述:
考点:二次函数单调性与最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

对于函数,若存在实数对(),使得等式对定义域中的每一个都成立,则称函数是“()型函数”.
(Ⅰ)判断函数是否为 “()型函数”,并说明理由;
(Ⅱ)若函数是“()型函数”,求出满足条件的一组实数对;,
(Ⅲ)已知函数是“()型函数”,对应的实数对.当时,,若当时,都有,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过40辆/千米时,车流速度为80千米/小时.研究表明:当时,车流速度是车流密度的一次函数.(1)当时,求函数的表达式;
(2)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位: 辆/小时)f ,可以达到最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图是某重点中学学校运动场平面图,运动场总面积15000平方米,运动场是由一个矩形和分别以为直径的两个半圆组成,塑胶跑道宽8米,已知塑胶跑道每平方米造价为150元,其它部分造价每平方米80元,

(Ⅰ)设半圆的半径(米),写出塑胶跑道面积的函数关系式
(Ⅱ)由于受运动场两侧看台限制,的范围为,问当为何值时,运动场造价最低(第2问取3近似计算).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数满足,对任意都有,且
(1)求函数的解析式;
(2)是否存在实数,使函数上为减函数?若存在,求出实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知幂函数(m∈N)的图象关于y轴对称,且在(0,+∞)上是减函数,求满足的a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了降低能损耗,最近上海对新建住宅的屋顶和外墙都要求建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能消耗费用为8万元.设f(x)为隔热层建造费用与20年的能消耗费用之和.
(1)求k的值及f(x)的表达式;
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中实数
(1)若,求函数的单调区间;
(2)当函数的图象只有一个公共点且存在最小值时,记的最小值为,求的值域;
(3)若在区间内均为增函数,求实数的取值范围.

查看答案和解析>>

同步练习册答案