精英家教网 > 高中数学 > 题目详情

【题目】a,b为正数,给出下列命题:

①若a2﹣b2=1,则a﹣b<1;

②若=1,则a﹣b<1;

③ea﹣eb=1,则a﹣b<1;

④若lna﹣lnb=1,则a﹣b<1.

其中真命题的有_____

【答案】①③

【解析】

不正确的结论,列举反例,正确的结论,进行严密的证明,即可得出结论.

①中,a,b中至少有一个大于等于1,则a+b>1,由a2-b2=(a+b)(a-b)=1,所以a-b<1,故①正确.

②中=1, 只需a-b=ab即可,取a=2,b=,满足上式但a-b=>1故②错;
③构造函数y=x-ex,x>0,y′=1-ex<0,函数单调递减,∵ea-eb=1,∴a>b,∴a-ea<b-eb
∴a-b<ea-eb=1,故③正确;

④若lna-lnb=1,则a=e,b=1,a-b=e-1>1,故④不正确.

故答案为:①③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且.

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),若以直角坐标系中的原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为为实数.

1)求曲线的普通方程和曲线的直角坐标方程;

2)若曲线与曲线有公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为椭圆的右焦点,点上,且轴.

(1)求的方程;

(2)过的直线两点,交直线于点.判定直线的斜率是否依次构成等差数列?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四种说法中,

①命题“存在x∈R,x2﹣x>0”的否定是“对于任意x∈R,x2﹣x<0”;

②命题“p且q为真”是“p或q为真”的必要不充分条件;

③已知幂函数f(x)=xα的图象经过点(2,),则f(4)的值等于

④已知向量a=(3,4),b=(2,1),b =(2,1),则向量a在向量b方向上的投影是

其中说法正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区上年度电价为0.8,年用电量为,本年度计划将电价降到0.550.75之间,而用户期待电价为0.4,下调电价后新增加的用电量与实际电价和用户期望电价的差成反比(比例系数为K),该地区的电力成本为0.3.(注:收益=实际用电量(实际电价-成本价)),示例:若实际电价为0.6,则下调电价后新增加的用电量为)

1)写出本年度电价下调后,电力部门的收益与实际电价的函数关系;

2)设,当电价最低为多少仍可保证电力部门的收益比上一年至少增长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中的导函数.

.

1)求的表达式;

2)求证:,其中nN*.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解户籍性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为的调查样本,其中城镇户籍与农民户籍各人;男性人,女性.绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图(如图所示),其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述中错误的是(

A.是否倾向选择生育二胎与户籍有关

B.是否倾向选择生育二胎与性别无关

C.倾向选择生育二胎的人员中,男性人数与女性人数相同

D.倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范围.

查看答案和解析>>

同步练习册答案