精英家教网 > 高中数学 > 题目详情

【题目】函数 若函数 上有3个零点,则 的取值范围为

【答案】(-24,8)
【解析】因为 ,则当 时, ,函数 单调递增;当 时, ,函数 单调递减;当 时, ,函数 单调递增。所以函数 时取极大值 时取极小值 ,结合图形可知当 时,函数 的图像有三个交点,即函数 有三个零点,应填答案

所以答案是:(-24,8) .
【考点精析】本题主要考查了函数的极值与导数和函数的零点的相关知识点,需要掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值;函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根,函数的图象与坐标轴有交点,函数有零点才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为 (t为参数).
(1)求曲线C1的直角坐标方程及直线l的普通方程;
(2)若曲线C2的参数方程为 (α为参数),曲线C1上点P的极角为 ,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 :方程 有两个不等的正根; :方程 表示焦点在 轴上的双曲线.
(1)若 为真命题,求实数 的取值范围;
(2)若“ ”为真,“ ”为假,求实数 的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和满足 .

(1)求数列的通项公式

(2)若数列满足

(I)求数列的前项和

(II)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某渔船在航行中不幸遇险,发出呼叫信号,我海军舰艇在处获悉后,立即测出该渔船在方位角(从指北方向顺时针转到目标方向线的水平角)为,距离为15海里的处,并测得渔船正沿方位角为的方向,以15海里/小时的速度向小岛靠拢,我海军舰艇立即以海里/小时的速度前去营救,求舰艇靠近渔船所需的最少时间和舰艇的航向.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a为实数,函数f(x)=x3﹣x2﹣x+a , 若函数f(x)过点A(1,0),求函数在区间[﹣1,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商店对新引进的商品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

定价(元)

9

9.2

9.4

9.6

9.8

10

销量件)

100

94

93

90

85

78

(1)求回归直线方程

(2)假设今后销售依然服从(Ⅰ)中的关系,且该商品金价为每件5元,为获得最大利润,商店应该如何定价?(利润=销售收入-成本)

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个 列联表;
(2)判断性别与休闲方式是否有关系.

0.05

0.025

0.010

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+(b8)xaab,当x(3)∪(2,+)时,f(x)<0.

(1)f(x)的解析式;

(2)若不等式f(x)<m的解集为R,求m的取值范围;

(3) 求不等式f(x)<m+18的解集

查看答案和解析>>

同步练习册答案