精英家教网 > 高中数学 > 题目详情
1.以下结论不正确的是(  )
A.根据2×2列联表中的数据计算得出K2≥6.635,而P(K2≥6.635)≈0.01,则有99%的把握认为两个分类变量有关系
B.在线性回归分析中,相关系数为r,|r|越接近于1,相关程度越大;|r|越小,相关程度越小
C.在回归分析中,相关指数R2越大,说明残差平方和越小,回归效果越好
D.在回归直线y=0.5x-85中,变量x=200时,变量y的值一定是15

分析 根据独立性检验,相关系数,相关指数,回归分析的定义及性质,逐一分析四个答案的真假即可.

解答 解:根据2×2列联表中的数据计算得出K2≥6.635,而P(K2≥6.635)≈0.01,则有99%的把握认为两个分类变量有关系,故A正确;
在线性回归分析中,相关系数为r,|r|越接近于1,相关程度越大;|r|越接近于0(越小),相关程度越小.故B正确;
在回归分析中,相关指数R2越大,说明残差平方和越小,回归效果越好,故C正确;
在回归直线y=0.5x-85中,变量x=200时,变量y的预报值是15,但实际观测值可能不是15,故D错误;
故选:D

点评 本题以命题的真假判断与应用为载体,考查了独立性检验,相关系数,相关指数,回归分析的定义及性质,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2$\sqrt{3}$sinxcosx+2cos2x-1,x∈R.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调递增区间;
(3)当x∈[-$\frac{π}{12}$,$\frac{π}{2}$]时,实数m满足:m-f(x)≥0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是(  )
表1                                  
成绩性别不及格及格总计
61420
102232
总计163652
表2
视力性别总计
41620
122032
总计163652
表3
智商性别偏高正常总计
81220
82432
总计163652
表4
阅读量性别丰富不丰富总计
14620
23032
总计163652
A.成绩B.视力C.智商D.阅读

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=|2x-1|.
(1)求f(x)的单调区间;
(2)比较f(x+1)与f(x)的大小;
(3)试确定函数g(x)=f(x)-x2零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知定义在R上的偶函数f(x)的最小值为1,当x∈[0,+∞)时,f(x)=aex
(1)若当x≤0时都有不等式:f(x)+kx-1≥0恒成立,求实数k的取值范围;
(2)求最大的整数m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤ex.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$\overrightarrow a$=(2,3),$\overrightarrow b$=(1,1)则$\overrightarrow a-\overrightarrow b$=(  )
A.(1,2)B.(3,4)C.(1,1)D.(-1,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若?x1,x2,x3∈R,都有f(x1)+f(x2)≥f(x3),则称f(x)为等差函数.若函数f(x)=$\frac{{4}^{x}}{{4}^{x}-{2}^{x}+1}$+m为等差函数,则m的取值范围为[$\frac{4}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.根据下列条件求点P0到直线l的距离:
(1)P0(1,0),直线l:-4x+3y-1=0;
(2)P0(-2,1),直线l:2x-3y=0;
(3)P0(2,-3),直线l:y=$\frac{1}{2}$x-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设一元二次方程x2+2ax+6-a=0的根分别满足下列条件,试求实数a的范围.
(1)两根均大于1;
(2)一根大于1,另一根小于1.

查看答案和解析>>

同步练习册答案